--- tags: - generated_from_trainer model-index: - name: DNADebertaK6_Arabidopsis results: [] --- # DNADebertaK6_Arabidopsis This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 600001 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 4.6174 | 6.12 | 20000 | 1.9257 | | 1.8873 | 12.24 | 40000 | 1.8098 | | 1.8213 | 18.36 | 60000 | 1.7952 | | 1.8042 | 24.48 | 80000 | 1.7888 | | 1.7945 | 30.6 | 100000 | 1.7861 | | 1.7873 | 36.72 | 120000 | 1.7772 | | 1.782 | 42.84 | 140000 | 1.7757 | | 1.7761 | 48.96 | 160000 | 1.7632 | | 1.7714 | 55.08 | 180000 | 1.7685 | | 1.7677 | 61.2 | 200000 | 1.7568 | | 1.7637 | 67.32 | 220000 | 1.7570 | | 1.7585 | 73.44 | 240000 | 1.7442 | | 1.7554 | 79.56 | 260000 | 1.7556 | | 1.7515 | 85.68 | 280000 | 1.7505 | | 1.7483 | 91.8 | 300000 | 1.7463 | | 1.745 | 97.92 | 320000 | 1.7425 | | 1.7427 | 104.04 | 340000 | 1.7425 | | 1.7398 | 110.16 | 360000 | 1.7359 | | 1.7377 | 116.28 | 380000 | 1.7369 | | 1.7349 | 122.4 | 400000 | 1.7340 | | 1.7325 | 128.52 | 420000 | 1.7313 | | 1.731 | 134.64 | 440000 | 1.7256 | | 1.7286 | 140.76 | 460000 | 1.7238 | | 1.7267 | 146.88 | 480000 | 1.7324 | | 1.7247 | 153.0 | 500000 | 1.7247 | | 1.7228 | 159.12 | 520000 | 1.7185 | | 1.7209 | 165.24 | 540000 | 1.7166 | | 1.7189 | 171.36 | 560000 | 1.7206 | | 1.7181 | 177.48 | 580000 | 1.7190 | | 1.7159 | 183.6 | 600000 | 1.7194 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1