--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-sst-2-64-13-smoothed results: [] --- # roberta-base-sst-2-64-13-smoothed This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6071 - Accuracy: 0.8672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 75 - label_smoothing_factor: 0.45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.6941 | 0.5 | | No log | 2.0 | 8 | 0.6939 | 0.5 | | 0.694 | 3.0 | 12 | 0.6936 | 0.5 | | 0.694 | 4.0 | 16 | 0.6932 | 0.5 | | 0.6948 | 5.0 | 20 | 0.6929 | 0.5 | | 0.6948 | 6.0 | 24 | 0.6925 | 0.5 | | 0.6948 | 7.0 | 28 | 0.6922 | 0.5469 | | 0.6948 | 8.0 | 32 | 0.6919 | 0.6719 | | 0.6948 | 9.0 | 36 | 0.6914 | 0.7266 | | 0.6908 | 10.0 | 40 | 0.6907 | 0.75 | | 0.6908 | 11.0 | 44 | 0.6894 | 0.6719 | | 0.6908 | 12.0 | 48 | 0.6866 | 0.6328 | | 0.6835 | 13.0 | 52 | 0.6789 | 0.7891 | | 0.6835 | 14.0 | 56 | 0.6514 | 0.8828 | | 0.637 | 15.0 | 60 | 0.6004 | 0.875 | | 0.637 | 16.0 | 64 | 0.6097 | 0.8984 | | 0.637 | 17.0 | 68 | 0.6147 | 0.8516 | | 0.5653 | 18.0 | 72 | 0.5973 | 0.8672 | | 0.5653 | 19.0 | 76 | 0.6056 | 0.875 | | 0.544 | 20.0 | 80 | 0.6077 | 0.875 | | 0.544 | 21.0 | 84 | 0.5947 | 0.8672 | | 0.544 | 22.0 | 88 | 0.6029 | 0.8828 | | 0.5384 | 23.0 | 92 | 0.6067 | 0.8828 | | 0.5384 | 24.0 | 96 | 0.5998 | 0.8828 | | 0.5361 | 25.0 | 100 | 0.5978 | 0.8906 | | 0.5361 | 26.0 | 104 | 0.6004 | 0.875 | | 0.5361 | 27.0 | 108 | 0.6055 | 0.8672 | | 0.5364 | 28.0 | 112 | 0.6064 | 0.8672 | | 0.5364 | 29.0 | 116 | 0.5991 | 0.8906 | | 0.5364 | 30.0 | 120 | 0.5973 | 0.8906 | | 0.5364 | 31.0 | 124 | 0.6019 | 0.8828 | | 0.5364 | 32.0 | 128 | 0.6085 | 0.8594 | | 0.5358 | 33.0 | 132 | 0.6069 | 0.8672 | | 0.5358 | 34.0 | 136 | 0.6075 | 0.8594 | | 0.5357 | 35.0 | 140 | 0.6022 | 0.8828 | | 0.5357 | 36.0 | 144 | 0.5980 | 0.8906 | | 0.5357 | 37.0 | 148 | 0.5983 | 0.8984 | | 0.5359 | 38.0 | 152 | 0.5962 | 0.8984 | | 0.5359 | 39.0 | 156 | 0.5965 | 0.8984 | | 0.5358 | 40.0 | 160 | 0.6007 | 0.8984 | | 0.5358 | 41.0 | 164 | 0.6010 | 0.8984 | | 0.5358 | 42.0 | 168 | 0.5975 | 0.8984 | | 0.5355 | 43.0 | 172 | 0.5975 | 0.8906 | | 0.5355 | 44.0 | 176 | 0.6012 | 0.8906 | | 0.5354 | 45.0 | 180 | 0.6027 | 0.8828 | | 0.5354 | 46.0 | 184 | 0.6027 | 0.8828 | | 0.5354 | 47.0 | 188 | 0.6018 | 0.8828 | | 0.5355 | 48.0 | 192 | 0.6070 | 0.875 | | 0.5355 | 49.0 | 196 | 0.6090 | 0.8672 | | 0.5352 | 50.0 | 200 | 0.6090 | 0.8672 | | 0.5352 | 51.0 | 204 | 0.6079 | 0.8672 | | 0.5352 | 52.0 | 208 | 0.6072 | 0.8906 | | 0.5354 | 53.0 | 212 | 0.6063 | 0.8906 | | 0.5354 | 54.0 | 216 | 0.6045 | 0.8672 | | 0.5353 | 55.0 | 220 | 0.6094 | 0.8672 | | 0.5353 | 56.0 | 224 | 0.6167 | 0.8438 | | 0.5353 | 57.0 | 228 | 0.6176 | 0.8516 | | 0.5353 | 58.0 | 232 | 0.6188 | 0.8516 | | 0.5353 | 59.0 | 236 | 0.6204 | 0.8516 | | 0.5353 | 60.0 | 240 | 0.6218 | 0.8438 | | 0.5353 | 61.0 | 244 | 0.6222 | 0.8516 | | 0.5353 | 62.0 | 248 | 0.6208 | 0.8516 | | 0.5352 | 63.0 | 252 | 0.6194 | 0.8516 | | 0.5352 | 64.0 | 256 | 0.6167 | 0.8438 | | 0.5351 | 65.0 | 260 | 0.6144 | 0.8438 | | 0.5351 | 66.0 | 264 | 0.6128 | 0.8516 | | 0.5351 | 67.0 | 268 | 0.6117 | 0.8594 | | 0.5349 | 68.0 | 272 | 0.6112 | 0.8594 | | 0.5349 | 69.0 | 276 | 0.6114 | 0.8672 | | 0.5351 | 70.0 | 280 | 0.6089 | 0.8672 | | 0.5351 | 71.0 | 284 | 0.6077 | 0.875 | | 0.5351 | 72.0 | 288 | 0.6073 | 0.875 | | 0.5352 | 73.0 | 292 | 0.6072 | 0.8672 | | 0.5352 | 74.0 | 296 | 0.6071 | 0.8672 | | 0.5355 | 75.0 | 300 | 0.6071 | 0.8672 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3