simonycl's picture
update model card README.md
1599922
|
raw
history blame
3.2 kB
metadata
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: roberta-large-sst-2-16-13-30
    results: []

roberta-large-sst-2-16-13-30

This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6901
  • Accuracy: 0.625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6957 0.5
No log 2.0 2 0.6955 0.5
No log 3.0 3 0.6952 0.5
No log 4.0 4 0.6944 0.5
No log 5.0 5 0.6937 0.5
No log 6.0 6 0.6933 0.5
No log 7.0 7 0.6929 0.5
No log 8.0 8 0.6942 0.5
No log 9.0 9 0.6931 0.5
0.6903 10.0 10 0.6917 0.5
0.6903 11.0 11 0.6905 0.5
0.6903 12.0 12 0.6891 0.5312
0.6903 13.0 13 0.6883 0.625
0.6903 14.0 14 0.6874 0.6562
0.6903 15.0 15 0.6849 0.5312
0.6903 16.0 16 0.6822 0.5312
0.6903 17.0 17 0.6790 0.5
0.6903 18.0 18 0.6742 0.5
0.6903 19.0 19 0.6650 0.5312
0.626 20.0 20 0.6524 0.5312
0.626 21.0 21 0.6444 0.5312
0.626 22.0 22 0.6361 0.5625
0.626 23.0 23 0.6327 0.5938
0.626 24.0 24 0.6337 0.625
0.626 25.0 25 0.6437 0.625
0.626 26.0 26 0.6580 0.6562
0.626 27.0 27 0.6725 0.6562
0.626 28.0 28 0.6812 0.625
0.626 29.0 29 0.6873 0.625
0.4393 30.0 30 0.6901 0.625

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3