--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-sst-2-16-21 results: [] --- # bert-base-uncased-sst-2-16-21 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5327 - Accuracy: 0.6562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6100 | 0.5938 | | No log | 2.0 | 2 | 0.6101 | 0.5938 | | No log | 3.0 | 3 | 0.6101 | 0.5938 | | No log | 4.0 | 4 | 0.6101 | 0.5938 | | No log | 5.0 | 5 | 0.6100 | 0.5938 | | No log | 6.0 | 6 | 0.6099 | 0.5938 | | No log | 7.0 | 7 | 0.6099 | 0.5938 | | No log | 8.0 | 8 | 0.6099 | 0.5938 | | No log | 9.0 | 9 | 0.6097 | 0.5938 | | 0.6585 | 10.0 | 10 | 0.6097 | 0.5938 | | 0.6585 | 11.0 | 11 | 0.6095 | 0.5938 | | 0.6585 | 12.0 | 12 | 0.6094 | 0.5938 | | 0.6585 | 13.0 | 13 | 0.6093 | 0.5938 | | 0.6585 | 14.0 | 14 | 0.6092 | 0.5938 | | 0.6585 | 15.0 | 15 | 0.6088 | 0.5938 | | 0.6585 | 16.0 | 16 | 0.6086 | 0.5938 | | 0.6585 | 17.0 | 17 | 0.6083 | 0.5938 | | 0.6585 | 18.0 | 18 | 0.6078 | 0.5938 | | 0.6585 | 19.0 | 19 | 0.6074 | 0.625 | | 0.6577 | 20.0 | 20 | 0.6070 | 0.625 | | 0.6577 | 21.0 | 21 | 0.6064 | 0.625 | | 0.6577 | 22.0 | 22 | 0.6058 | 0.625 | | 0.6577 | 23.0 | 23 | 0.6051 | 0.625 | | 0.6577 | 24.0 | 24 | 0.6044 | 0.625 | | 0.6577 | 25.0 | 25 | 0.6038 | 0.625 | | 0.6577 | 26.0 | 26 | 0.6035 | 0.625 | | 0.6577 | 27.0 | 27 | 0.6033 | 0.625 | | 0.6577 | 28.0 | 28 | 0.6033 | 0.625 | | 0.6577 | 29.0 | 29 | 0.6030 | 0.625 | | 0.6396 | 30.0 | 30 | 0.6028 | 0.625 | | 0.6396 | 31.0 | 31 | 0.6025 | 0.625 | | 0.6396 | 32.0 | 32 | 0.6021 | 0.625 | | 0.6396 | 33.0 | 33 | 0.6019 | 0.625 | | 0.6396 | 34.0 | 34 | 0.6016 | 0.625 | | 0.6396 | 35.0 | 35 | 0.6015 | 0.625 | | 0.6396 | 36.0 | 36 | 0.6014 | 0.5938 | | 0.6396 | 37.0 | 37 | 0.6013 | 0.5938 | | 0.6396 | 38.0 | 38 | 0.6010 | 0.5938 | | 0.6396 | 39.0 | 39 | 0.6008 | 0.5938 | | 0.5911 | 40.0 | 40 | 0.6006 | 0.5938 | | 0.5911 | 41.0 | 41 | 0.6002 | 0.5938 | | 0.5911 | 42.0 | 42 | 0.5998 | 0.5938 | | 0.5911 | 43.0 | 43 | 0.5992 | 0.5938 | | 0.5911 | 44.0 | 44 | 0.5985 | 0.625 | | 0.5911 | 45.0 | 45 | 0.5980 | 0.625 | | 0.5911 | 46.0 | 46 | 0.5976 | 0.625 | | 0.5911 | 47.0 | 47 | 0.5974 | 0.625 | | 0.5911 | 48.0 | 48 | 0.5975 | 0.625 | | 0.5911 | 49.0 | 49 | 0.5977 | 0.625 | | 0.5576 | 50.0 | 50 | 0.5980 | 0.625 | | 0.5576 | 51.0 | 51 | 0.5984 | 0.625 | | 0.5576 | 52.0 | 52 | 0.5990 | 0.625 | | 0.5576 | 53.0 | 53 | 0.5992 | 0.625 | | 0.5576 | 54.0 | 54 | 0.5995 | 0.625 | | 0.5576 | 55.0 | 55 | 0.5999 | 0.5938 | | 0.5576 | 56.0 | 56 | 0.6003 | 0.5938 | | 0.5576 | 57.0 | 57 | 0.6008 | 0.5938 | | 0.5576 | 58.0 | 58 | 0.6012 | 0.5938 | | 0.5576 | 59.0 | 59 | 0.6015 | 0.5938 | | 0.499 | 60.0 | 60 | 0.6017 | 0.5938 | | 0.499 | 61.0 | 61 | 0.6018 | 0.5938 | | 0.499 | 62.0 | 62 | 0.6016 | 0.5938 | | 0.499 | 63.0 | 63 | 0.6017 | 0.5938 | | 0.499 | 64.0 | 64 | 0.6019 | 0.5938 | | 0.499 | 65.0 | 65 | 0.6018 | 0.5938 | | 0.499 | 66.0 | 66 | 0.6016 | 0.625 | | 0.499 | 67.0 | 67 | 0.6012 | 0.625 | | 0.499 | 68.0 | 68 | 0.6005 | 0.625 | | 0.499 | 69.0 | 69 | 0.5996 | 0.625 | | 0.4607 | 70.0 | 70 | 0.5988 | 0.625 | | 0.4607 | 71.0 | 71 | 0.5978 | 0.5938 | | 0.4607 | 72.0 | 72 | 0.5969 | 0.5938 | | 0.4607 | 73.0 | 73 | 0.5960 | 0.5938 | | 0.4607 | 74.0 | 74 | 0.5952 | 0.5938 | | 0.4607 | 75.0 | 75 | 0.5943 | 0.625 | | 0.4607 | 76.0 | 76 | 0.5932 | 0.625 | | 0.4607 | 77.0 | 77 | 0.5923 | 0.625 | | 0.4607 | 78.0 | 78 | 0.5911 | 0.625 | | 0.4607 | 79.0 | 79 | 0.5900 | 0.625 | | 0.4053 | 80.0 | 80 | 0.5890 | 0.625 | | 0.4053 | 81.0 | 81 | 0.5881 | 0.625 | | 0.4053 | 82.0 | 82 | 0.5875 | 0.625 | | 0.4053 | 83.0 | 83 | 0.5870 | 0.625 | | 0.4053 | 84.0 | 84 | 0.5864 | 0.625 | | 0.4053 | 85.0 | 85 | 0.5859 | 0.6562 | | 0.4053 | 86.0 | 86 | 0.5854 | 0.625 | | 0.4053 | 87.0 | 87 | 0.5850 | 0.625 | | 0.4053 | 88.0 | 88 | 0.5847 | 0.625 | | 0.4053 | 89.0 | 89 | 0.5845 | 0.625 | | 0.3526 | 90.0 | 90 | 0.5844 | 0.6562 | | 0.3526 | 91.0 | 91 | 0.5843 | 0.6562 | | 0.3526 | 92.0 | 92 | 0.5844 | 0.625 | | 0.3526 | 93.0 | 93 | 0.5842 | 0.625 | | 0.3526 | 94.0 | 94 | 0.5839 | 0.625 | | 0.3526 | 95.0 | 95 | 0.5835 | 0.625 | | 0.3526 | 96.0 | 96 | 0.5829 | 0.625 | | 0.3526 | 97.0 | 97 | 0.5824 | 0.6562 | | 0.3526 | 98.0 | 98 | 0.5820 | 0.625 | | 0.3526 | 99.0 | 99 | 0.5817 | 0.625 | | 0.3275 | 100.0 | 100 | 0.5817 | 0.625 | | 0.3275 | 101.0 | 101 | 0.5818 | 0.5938 | | 0.3275 | 102.0 | 102 | 0.5817 | 0.5938 | | 0.3275 | 103.0 | 103 | 0.5813 | 0.5938 | | 0.3275 | 104.0 | 104 | 0.5806 | 0.5938 | | 0.3275 | 105.0 | 105 | 0.5794 | 0.5938 | | 0.3275 | 106.0 | 106 | 0.5779 | 0.5938 | | 0.3275 | 107.0 | 107 | 0.5765 | 0.625 | | 0.3275 | 108.0 | 108 | 0.5749 | 0.625 | | 0.3275 | 109.0 | 109 | 0.5733 | 0.625 | | 0.3001 | 110.0 | 110 | 0.5720 | 0.625 | | 0.3001 | 111.0 | 111 | 0.5705 | 0.625 | | 0.3001 | 112.0 | 112 | 0.5691 | 0.625 | | 0.3001 | 113.0 | 113 | 0.5676 | 0.6562 | | 0.3001 | 114.0 | 114 | 0.5660 | 0.6562 | | 0.3001 | 115.0 | 115 | 0.5645 | 0.6875 | | 0.3001 | 116.0 | 116 | 0.5631 | 0.6875 | | 0.3001 | 117.0 | 117 | 0.5618 | 0.6562 | | 0.3001 | 118.0 | 118 | 0.5606 | 0.6562 | | 0.3001 | 119.0 | 119 | 0.5593 | 0.6562 | | 0.2668 | 120.0 | 120 | 0.5584 | 0.6562 | | 0.2668 | 121.0 | 121 | 0.5576 | 0.625 | | 0.2668 | 122.0 | 122 | 0.5571 | 0.625 | | 0.2668 | 123.0 | 123 | 0.5566 | 0.6562 | | 0.2668 | 124.0 | 124 | 0.5560 | 0.6562 | | 0.2668 | 125.0 | 125 | 0.5555 | 0.6562 | | 0.2668 | 126.0 | 126 | 0.5549 | 0.6562 | | 0.2668 | 127.0 | 127 | 0.5542 | 0.6562 | | 0.2668 | 128.0 | 128 | 0.5531 | 0.6562 | | 0.2668 | 129.0 | 129 | 0.5513 | 0.6562 | | 0.2363 | 130.0 | 130 | 0.5495 | 0.6562 | | 0.2363 | 131.0 | 131 | 0.5478 | 0.6562 | | 0.2363 | 132.0 | 132 | 0.5461 | 0.6562 | | 0.2363 | 133.0 | 133 | 0.5444 | 0.6875 | | 0.2363 | 134.0 | 134 | 0.5430 | 0.6875 | | 0.2363 | 135.0 | 135 | 0.5418 | 0.6875 | | 0.2363 | 136.0 | 136 | 0.5409 | 0.6875 | | 0.2363 | 137.0 | 137 | 0.5399 | 0.6875 | | 0.2363 | 138.0 | 138 | 0.5390 | 0.6875 | | 0.2363 | 139.0 | 139 | 0.5380 | 0.6875 | | 0.1905 | 140.0 | 140 | 0.5376 | 0.6875 | | 0.1905 | 141.0 | 141 | 0.5372 | 0.6875 | | 0.1905 | 142.0 | 142 | 0.5367 | 0.6875 | | 0.1905 | 143.0 | 143 | 0.5362 | 0.6875 | | 0.1905 | 144.0 | 144 | 0.5357 | 0.6875 | | 0.1905 | 145.0 | 145 | 0.5354 | 0.6875 | | 0.1905 | 146.0 | 146 | 0.5350 | 0.6562 | | 0.1905 | 147.0 | 147 | 0.5346 | 0.6562 | | 0.1905 | 148.0 | 148 | 0.5340 | 0.6562 | | 0.1905 | 149.0 | 149 | 0.5333 | 0.6562 | | 0.1614 | 150.0 | 150 | 0.5327 | 0.6562 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3