File size: 10,631 Bytes
1e07e0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large-sst-2-64-13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-sst-2-64-13

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7488
- Accuracy: 0.9141

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 4    | 0.7118          | 0.5      |
| No log        | 2.0   | 8    | 0.7101          | 0.5      |
| 0.7289        | 3.0   | 12   | 0.7072          | 0.5      |
| 0.7289        | 4.0   | 16   | 0.7042          | 0.5      |
| 0.6989        | 5.0   | 20   | 0.6999          | 0.5      |
| 0.6989        | 6.0   | 24   | 0.6966          | 0.5      |
| 0.6989        | 7.0   | 28   | 0.6938          | 0.5      |
| 0.6959        | 8.0   | 32   | 0.6938          | 0.5      |
| 0.6959        | 9.0   | 36   | 0.6990          | 0.4766   |
| 0.6977        | 10.0  | 40   | 0.6931          | 0.5      |
| 0.6977        | 11.0  | 44   | 0.6854          | 0.5156   |
| 0.6977        | 12.0  | 48   | 0.6882          | 0.6016   |
| 0.6514        | 13.0  | 52   | 0.6495          | 0.7578   |
| 0.6514        | 14.0  | 56   | 0.5930          | 0.7656   |
| 0.5232        | 15.0  | 60   | 0.5280          | 0.8203   |
| 0.5232        | 16.0  | 64   | 0.4286          | 0.875    |
| 0.5232        | 17.0  | 68   | 0.2916          | 0.8906   |
| 0.2793        | 18.0  | 72   | 0.3444          | 0.9141   |
| 0.2793        | 19.0  | 76   | 0.4673          | 0.8984   |
| 0.0537        | 20.0  | 80   | 0.4232          | 0.9062   |
| 0.0537        | 21.0  | 84   | 0.4351          | 0.9297   |
| 0.0537        | 22.0  | 88   | 0.5124          | 0.9297   |
| 0.0032        | 23.0  | 92   | 0.4585          | 0.9375   |
| 0.0032        | 24.0  | 96   | 0.5067          | 0.9219   |
| 0.0016        | 25.0  | 100  | 0.5244          | 0.9375   |
| 0.0016        | 26.0  | 104  | 0.7050          | 0.9141   |
| 0.0016        | 27.0  | 108  | 0.5847          | 0.9297   |
| 0.0004        | 28.0  | 112  | 0.5744          | 0.9297   |
| 0.0004        | 29.0  | 116  | 0.5828          | 0.9375   |
| 0.0001        | 30.0  | 120  | 0.5884          | 0.9375   |
| 0.0001        | 31.0  | 124  | 0.5931          | 0.9375   |
| 0.0001        | 32.0  | 128  | 0.5983          | 0.9375   |
| 0.0001        | 33.0  | 132  | 0.6038          | 0.9375   |
| 0.0001        | 34.0  | 136  | 0.6076          | 0.9375   |
| 0.0001        | 35.0  | 140  | 0.6083          | 0.9375   |
| 0.0001        | 36.0  | 144  | 0.7169          | 0.9219   |
| 0.0001        | 37.0  | 148  | 0.6166          | 0.9375   |
| 0.0336        | 38.0  | 152  | 0.8108          | 0.9141   |
| 0.0336        | 39.0  | 156  | 0.7454          | 0.9141   |
| 0.0348        | 40.0  | 160  | 0.6944          | 0.9141   |
| 0.0348        | 41.0  | 164  | 0.7467          | 0.9141   |
| 0.0348        | 42.0  | 168  | 0.6764          | 0.9141   |
| 0.0402        | 43.0  | 172  | 0.6839          | 0.9219   |
| 0.0402        | 44.0  | 176  | 0.7118          | 0.9219   |
| 0.0002        | 45.0  | 180  | 0.6943          | 0.9219   |
| 0.0002        | 46.0  | 184  | 0.7469          | 0.9141   |
| 0.0002        | 47.0  | 188  | 0.7264          | 0.9219   |
| 0.0001        | 48.0  | 192  | 0.7112          | 0.9219   |
| 0.0001        | 49.0  | 196  | 0.6948          | 0.9219   |
| 0.0001        | 50.0  | 200  | 0.8408          | 0.9062   |
| 0.0001        | 51.0  | 204  | 0.7876          | 0.9141   |
| 0.0001        | 52.0  | 208  | 0.7271          | 0.9219   |
| 0.0001        | 53.0  | 212  | 0.8016          | 0.9141   |
| 0.0001        | 54.0  | 216  | 0.8336          | 0.9062   |
| 0.0148        | 55.0  | 220  | 0.7701          | 0.9219   |
| 0.0148        | 56.0  | 224  | 0.8717          | 0.9062   |
| 0.0148        | 57.0  | 228  | 0.8018          | 0.9141   |
| 0.0001        | 58.0  | 232  | 0.8777          | 0.9062   |
| 0.0001        | 59.0  | 236  | 0.9158          | 0.9062   |
| 0.0001        | 60.0  | 240  | 0.9356          | 0.8984   |
| 0.0001        | 61.0  | 244  | 0.7494          | 0.9062   |
| 0.0001        | 62.0  | 248  | 0.6708          | 0.9219   |
| 0.0298        | 63.0  | 252  | 0.6649          | 0.9141   |
| 0.0298        | 64.0  | 256  | 0.7463          | 0.9062   |
| 0.0285        | 65.0  | 260  | 0.8065          | 0.8984   |
| 0.0285        | 66.0  | 264  | 0.8267          | 0.9062   |
| 0.0285        | 67.0  | 268  | 0.8447          | 0.8984   |
| 0.0001        | 68.0  | 272  | 0.8409          | 0.8984   |
| 0.0001        | 69.0  | 276  | 0.6652          | 0.9219   |
| 0.0005        | 70.0  | 280  | 0.6507          | 0.9219   |
| 0.0005        | 71.0  | 284  | 0.6889          | 0.9062   |
| 0.0005        | 72.0  | 288  | 0.6652          | 0.9062   |
| 0.0296        | 73.0  | 292  | 0.6454          | 0.9062   |
| 0.0296        | 74.0  | 296  | 0.6368          | 0.9062   |
| 0.0002        | 75.0  | 300  | 0.6396          | 0.9062   |
| 0.0002        | 76.0  | 304  | 0.6505          | 0.9062   |
| 0.0002        | 77.0  | 308  | 0.6620          | 0.9062   |
| 0.0002        | 78.0  | 312  | 0.6734          | 0.9062   |
| 0.0002        | 79.0  | 316  | 0.6846          | 0.9062   |
| 0.0002        | 80.0  | 320  | 0.6951          | 0.9062   |
| 0.0002        | 81.0  | 324  | 0.7038          | 0.9062   |
| 0.0002        | 82.0  | 328  | 0.7116          | 0.9062   |
| 0.0002        | 83.0  | 332  | 0.7187          | 0.9062   |
| 0.0002        | 84.0  | 336  | 0.7250          | 0.9062   |
| 0.0002        | 85.0  | 340  | 0.6930          | 0.9141   |
| 0.0002        | 86.0  | 344  | 0.6856          | 0.9219   |
| 0.0002        | 87.0  | 348  | 0.7474          | 0.9141   |
| 0.0227        | 88.0  | 352  | 0.6506          | 0.9219   |
| 0.0227        | 89.0  | 356  | 0.6457          | 0.9219   |
| 0.0001        | 90.0  | 360  | 0.7022          | 0.9141   |
| 0.0001        | 91.0  | 364  | 0.7275          | 0.9062   |
| 0.0001        | 92.0  | 368  | 0.7375          | 0.9141   |
| 0.0001        | 93.0  | 372  | 0.8008          | 0.9062   |
| 0.0001        | 94.0  | 376  | 0.6855          | 0.9141   |
| 0.0053        | 95.0  | 380  | 0.5869          | 0.9375   |
| 0.0053        | 96.0  | 384  | 0.6060          | 0.9297   |
| 0.0053        | 97.0  | 388  | 0.5990          | 0.9297   |
| 0.0001        | 98.0  | 392  | 0.6250          | 0.9141   |
| 0.0001        | 99.0  | 396  | 0.6505          | 0.9141   |
| 0.0001        | 100.0 | 400  | 0.6577          | 0.9141   |
| 0.0001        | 101.0 | 404  | 0.6594          | 0.9141   |
| 0.0001        | 102.0 | 408  | 0.6602          | 0.9141   |
| 0.0001        | 103.0 | 412  | 0.6610          | 0.9219   |
| 0.0001        | 104.0 | 416  | 0.6622          | 0.9141   |
| 0.037         | 105.0 | 420  | 0.6055          | 0.9297   |
| 0.037         | 106.0 | 424  | 0.5915          | 0.9297   |
| 0.037         | 107.0 | 428  | 0.6261          | 0.9297   |
| 0.0001        | 108.0 | 432  | 0.6679          | 0.9219   |
| 0.0001        | 109.0 | 436  | 0.7106          | 0.9219   |
| 0.0001        | 110.0 | 440  | 0.7223          | 0.9219   |
| 0.0001        | 111.0 | 444  | 0.7267          | 0.9141   |
| 0.0001        | 112.0 | 448  | 0.7287          | 0.9141   |
| 0.0001        | 113.0 | 452  | 0.7298          | 0.9141   |
| 0.0001        | 114.0 | 456  | 0.7306          | 0.9141   |
| 0.0001        | 115.0 | 460  | 0.7314          | 0.9141   |
| 0.0001        | 116.0 | 464  | 0.7323          | 0.9141   |
| 0.0001        | 117.0 | 468  | 0.7333          | 0.9141   |
| 0.0001        | 118.0 | 472  | 0.7342          | 0.9141   |
| 0.0001        | 119.0 | 476  | 0.7351          | 0.9141   |
| 0.0001        | 120.0 | 480  | 0.7359          | 0.9141   |
| 0.0001        | 121.0 | 484  | 0.7369          | 0.9141   |
| 0.0001        | 122.0 | 488  | 0.7379          | 0.9141   |
| 0.0001        | 123.0 | 492  | 0.7388          | 0.9141   |
| 0.0001        | 124.0 | 496  | 0.7396          | 0.9141   |
| 0.0001        | 125.0 | 500  | 0.7403          | 0.9141   |
| 0.0001        | 126.0 | 504  | 0.7410          | 0.9141   |
| 0.0001        | 127.0 | 508  | 0.7417          | 0.9141   |
| 0.0001        | 128.0 | 512  | 0.7423          | 0.9141   |
| 0.0001        | 129.0 | 516  | 0.7429          | 0.9141   |
| 0.0001        | 130.0 | 520  | 0.7435          | 0.9141   |
| 0.0001        | 131.0 | 524  | 0.7440          | 0.9141   |
| 0.0001        | 132.0 | 528  | 0.7446          | 0.9141   |
| 0.0001        | 133.0 | 532  | 0.7450          | 0.9141   |
| 0.0001        | 134.0 | 536  | 0.7455          | 0.9141   |
| 0.0001        | 135.0 | 540  | 0.7459          | 0.9141   |
| 0.0001        | 136.0 | 544  | 0.7463          | 0.9141   |
| 0.0001        | 137.0 | 548  | 0.7466          | 0.9141   |
| 0.0001        | 138.0 | 552  | 0.7470          | 0.9141   |
| 0.0001        | 139.0 | 556  | 0.7473          | 0.9141   |
| 0.0001        | 140.0 | 560  | 0.7475          | 0.9141   |
| 0.0001        | 141.0 | 564  | 0.7478          | 0.9141   |
| 0.0001        | 142.0 | 568  | 0.7480          | 0.9141   |
| 0.0001        | 143.0 | 572  | 0.7482          | 0.9141   |
| 0.0001        | 144.0 | 576  | 0.7483          | 0.9141   |
| 0.0001        | 145.0 | 580  | 0.7485          | 0.9141   |
| 0.0001        | 146.0 | 584  | 0.7486          | 0.9141   |
| 0.0001        | 147.0 | 588  | 0.7487          | 0.9141   |
| 0.0001        | 148.0 | 592  | 0.7488          | 0.9141   |
| 0.0001        | 149.0 | 596  | 0.7488          | 0.9141   |
| 0.0001        | 150.0 | 600  | 0.7488          | 0.9141   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3