--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: breeze-listen-dsw-small-ml results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 33.92029657089898 --- # breeze-listen-dsw-small-ml This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3826 - Wer: 33.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4577 | 1.02 | 100 | 0.4824 | 58.3874 | | 0.1781 | 2.04 | 200 | 0.3066 | 41.0658 | | 0.0935 | 3.06 | 300 | 0.2903 | 35.6441 | | 0.057 | 5.0 | 400 | 0.3289 | 36.6172 | | 0.0285 | 6.03 | 500 | 0.3425 | 35.3197 | | 0.0203 | 7.05 | 600 | 0.3647 | 34.3837 | | 0.0103 | 8.07 | 700 | 0.3826 | 33.9203 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0