File size: 4,768 Bytes
36f4e94 de1fd1a 36f4e94 de1fd1a 36f4e94 de1fd1a 36f4e94 de1fd1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
language:
- de
- en
- es
- fr
- it
- ja
- nl
- pt
- zh
---
# Model Card for `passage-ranker.mango`
This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is used to order search results.
Model name: `passage-ranker.mango`
## Supported Languages
The model was trained and tested in the following languages:
- English
- French
- German
- Spanish
- Italian
- Dutch
- Japanese
- Portuguese
- Chinese (simplified)
Besides the aforementioned languages, basic support can be expected for additional 93 languages that were used during the pretraining of the base model (see
[list of languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages)).
## Scores
| Metric | Value |
|:--------------------|------:|
| Relevance (NDCG@10) | 0.480 |
Note that the relevance score is computed as an average over 14 retrieval datasets (see
[details below](#evaluation-metrics)).
## Inference Times
| GPU | Quantization type | Batch size 1 | Batch size 32 |
|:------------------------------------------|:------------------|---------------:|---------------:|
| NVIDIA A10 | FP16 | 2 ms | 28 ms |
| NVIDIA A10 | FP32 | 4 ms | 82 ms |
| NVIDIA T4 | FP16 | 3 ms | 65 ms |
| NVIDIA T4 | FP32 | 14 ms | 369 ms |
| NVIDIA L4 | FP16 | 3 ms | 38 ms |
| NVIDIA L4 | FP32 | 5 ms | 123 ms |
## Gpu Memory usage
| Quantization type | Memory |
|:-------------------------------------------------|-----------:|
| FP16 | 850 MiB |
| FP32 | 1200 MiB |
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
can be around 0.5 to 1 GiB depending on the used GPU.
## Requirements
- Minimal Sinequa version: 11.10.0
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
## Model Details
### Overview
- Number of parameters: 167 million
- Base language model: [Multilingual BERT-Base](https://huggingface.co/bert-base-multilingual-uncased)
- Insensitive to casing and accents
- Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
### Training Data
- MS MARCO Passage Ranking
([Paper](https://arxiv.org/abs/1611.09268),
[Official Page](https://microsoft.github.io/msmarco/),
[English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
- Original English dataset
- Translated datasets for the other eight supported languages
### Evaluation Metrics
To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
| Dataset | NDCG@10 |
|:------------------|--------:|
| Average | 0.480 |
| | |
| Arguana | 0.537 |
| CLIMATE-FEVER | 0.241 |
| DBPedia Entity | 0.371 |
| FEVER | 0.777 |
| FiQA-2018 | 0.327 |
| HotpotQA | 0.696 |
| MS MARCO | 0.414 |
| NFCorpus | 0.332 |
| NQ | 0.484 |
| Quora | 0.768 |
| SCIDOCS | 0.143 |
| SciFact | 0.648 |
| TREC-COVID | 0.673 |
| Webis-Touche-2020 | 0.310 |
We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics for the existing languages.
| Language | NDCG@10 |
|:----------------------|--------:|
| French | 0.447 |
| German | 0.415 |
| Spanish | 0.485 |
| Japanese | 0.526 |
| Chinese (simplified) | 0.463 |
|