skirres commited on
Commit
e248433
1 Parent(s): d45d734

Initial commit (#1)

Browse files

- Model sources and card (0badf274da6bf5bef4a15f158cde8b5471d2050d)

Files changed (4) hide show
  1. README.md +119 -0
  2. config.json +29 -0
  3. pytorch_model.bin +3 -0
  4. tokenizer.json +0 -0
README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - ja
9
+ - nl
10
+ - pt
11
+ - zh
12
+ ---
13
+
14
+ # Model Card for `passage-ranker.mango`
15
+
16
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
17
+ used to order search results.
18
+
19
+ Model name: `passage-ranker.mango`
20
+
21
+ ## Supported Languages
22
+
23
+ The model was trained and tested in the following languages:
24
+
25
+ - Chinese
26
+ - Dutch
27
+ - English
28
+ - French
29
+ - German
30
+ - Italian
31
+ - Japanese
32
+ - Portuguese
33
+ - Spanish
34
+
35
+ Besides the aforementioned languages, basic support can be expected for additional 93 languages that were used during
36
+ the pretraining of the base model (see
37
+ [list of languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages)).
38
+
39
+ ## Scores
40
+
41
+ | Metric | Value |
42
+ |:--------------------|------:|
43
+ | Relevance (NDCG@10) | 0.480 |
44
+
45
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
46
+ [details below](#evaluation-metrics)).
47
+
48
+ ## Inference Times
49
+
50
+ | GPU | Batch size 32 |
51
+ |:-----------|--------------:|
52
+ | NVIDIA A10 | 84 ms |
53
+ | NVIDIA T4 | 358 ms |
54
+
55
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
56
+ post-processing steps like the tokenization.
57
+
58
+ ## Requirements
59
+
60
+ - Minimal Sinequa version: 11.10.0
61
+ - GPU memory usage: 1070 MiB
62
+
63
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
64
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
65
+ can be around 0.5 to 1 GiB depending on the used GPU.
66
+
67
+ ## Model Details
68
+
69
+ ### Overview
70
+
71
+ - Number of parameters: 167 million
72
+ - Base language model: [Multilingual BERT-Base](https://huggingface.co/bert-base-multilingual-uncased)
73
+ - Insensitive to casing and accents
74
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
75
+
76
+ ### Training Data
77
+
78
+ - MS MARCO Passage Ranking
79
+ ([Paper](https://arxiv.org/abs/1611.09268),
80
+ [Official Page](https://microsoft.github.io/msmarco/),
81
+ [English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
82
+ - Original English dataset
83
+ - Translated datasets for the other eight supported languages
84
+
85
+ ### Evaluation Metrics
86
+
87
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
88
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
89
+
90
+ | Dataset | NDCG@10 |
91
+ |:------------------|--------:|
92
+ | Average | 0.480 |
93
+ | | |
94
+ | Arguana | 0.537 |
95
+ | CLIMATE-FEVER | 0.241 |
96
+ | DBPedia Entity | 0.371 |
97
+ | FEVER | 0.777 |
98
+ | FiQA-2018 | 0.327 |
99
+ | HotpotQA | 0.696 |
100
+ | MS MARCO | 0.414 |
101
+ | NFCorpus | 0.332 |
102
+ | NQ | 0.484 |
103
+ | Quora | 0.768 |
104
+ | SCIDOCS | 0.143 |
105
+ | SciFact | 0.648 |
106
+ | TREC-COVID | 0.673 |
107
+ | Webis-Touche-2020 | 0.310 |
108
+
109
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
110
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
111
+ for the existing languages.
112
+
113
+ | Language | NDCG@10 |
114
+ |:---------|--------:|
115
+ | Chinese | 0.463 |
116
+ | French | 0.447 |
117
+ | German | 0.415 |
118
+ | Japanese | 0.526 |
119
+ | Spanish | 0.485 |
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "pooler_fc_size": 768,
20
+ "pooler_num_attention_heads": 12,
21
+ "pooler_num_fc_layers": 3,
22
+ "pooler_size_per_head": 128,
23
+ "pooler_type": "first_token_transform",
24
+ "position_embedding_type": "absolute",
25
+ "transformers_version": "4.29.1",
26
+ "type_vocab_size": 2,
27
+ "use_cache": true,
28
+ "vocab_size": 105879
29
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fc76a43b7acf2956d8b299c43f2e827d1334f0b36397a4143da76624e0c494e
3
+ size 669500013
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff