First README.md draft (#1)
Browse files- Initial commit (1f4ddd44d3377a6256af8bfde021f34918f23c68)
- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +161 -0
- config.json +26 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- reduction_layer.bin +3 -0
- sinequa.metadata.json +3 -0
- tokenizer.json +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
language:
|
7 |
+
- de
|
8 |
+
- en
|
9 |
+
- es
|
10 |
+
- fr
|
11 |
+
- it
|
12 |
+
- nl
|
13 |
+
- ja
|
14 |
+
- pt
|
15 |
+
- zh
|
16 |
+
- pl
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model Card for `vectorizer.hazelnut`
|
20 |
+
|
21 |
+
This model is a vectorizer developed by Sinequa. It produces an embedding vector given a passage or a query. The
|
22 |
+
passage vectors are stored in our vector index and the query vector is used at query time to look up relevant passages
|
23 |
+
in the index.
|
24 |
+
|
25 |
+
Model name: `vectorizer.hazelnut`
|
26 |
+
|
27 |
+
## Supported Languages
|
28 |
+
|
29 |
+
The model was trained and tested in the following languages:
|
30 |
+
|
31 |
+
- English
|
32 |
+
- French
|
33 |
+
- German
|
34 |
+
- Spanish
|
35 |
+
- Italian
|
36 |
+
- Dutch
|
37 |
+
- Japanese
|
38 |
+
- Portuguese
|
39 |
+
- Chinese (simplified)
|
40 |
+
- Polish
|
41 |
+
|
42 |
+
Besides these languages, basic support can be expected for additional 91 languages that were used during the pretraining
|
43 |
+
of the base model (see Appendix A of XLM-R paper).
|
44 |
+
|
45 |
+
## Scores
|
46 |
+
|
47 |
+
| Metric | Value |
|
48 |
+
|:-------------------------------|------:|
|
49 |
+
| English Relevance (Recall@100) | 0.590 |
|
50 |
+
| Polish Relevance (Recall@100) | 0.543 |
|
51 |
+
|
52 |
+
Note that the relevance scores are computed as an average over several retrieval datasets (see
|
53 |
+
[details below](#evaluation-metrics)).
|
54 |
+
|
55 |
+
## Inference Times
|
56 |
+
|
57 |
+
| GPU | Quantization type | Batch size 1 | Batch size 32 |
|
58 |
+
|:------------------------------------------|:------------------|---------------:|---------------:|
|
59 |
+
| NVIDIA A10 | FP16 | 1 ms | 5 ms |
|
60 |
+
| NVIDIA A10 | FP32 | 2 ms | 18 ms |
|
61 |
+
| NVIDIA T4 | FP16 | 1 ms | 12 ms |
|
62 |
+
| NVIDIA T4 | FP32 | 3 ms | 52 ms |
|
63 |
+
| NVIDIA L4 | FP16 | 2 ms | 5 ms |
|
64 |
+
| NVIDIA L4 | FP32 | 4 ms | 24 ms |
|
65 |
+
|
66 |
+
## Gpu Memory usage
|
67 |
+
|
68 |
+
| Quantization type | Memory |
|
69 |
+
|:-------------------------------------------------|-----------:|
|
70 |
+
| FP16 | 550 MiB |
|
71 |
+
| FP32 | 1050 MiB |
|
72 |
+
|
73 |
+
Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
|
74 |
+
size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
|
75 |
+
can be around 0.5 to 1 GiB depending on the used GPU.
|
76 |
+
|
77 |
+
## Requirements
|
78 |
+
|
79 |
+
- Minimal Sinequa version: 11.10.0
|
80 |
+
- Minimal Sinequa version for using FP16 models and GPUs with CUDA compute capability of 8.9+ (like NVIDIA L4): 11.11.0
|
81 |
+
- [Cuda compute capability](https://developer.nvidia.com/cuda-gpus): above 5.0 (above 6.0 for FP16 use)
|
82 |
+
|
83 |
+
## Model Details
|
84 |
+
|
85 |
+
### Overview
|
86 |
+
|
87 |
+
- Number of parameters: 107 million
|
88 |
+
- Base language
|
89 |
+
model: [mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co/nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large) ([Paper](https://arxiv.org/abs/2012.15828), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
|
90 |
+
- Insensitive to casing and accents
|
91 |
+
- Output dimensions: 256 (reduced with an additional dense layer)
|
92 |
+
- Training procedure: Query-passage-negative triplets for datasets that have mined hard negative data, Query-passage
|
93 |
+
pairs for the rest. Number of negatives is augmented with in-batch negative strategy
|
94 |
+
|
95 |
+
### Training Data
|
96 |
+
|
97 |
+
The model have been trained using all datasets that are cited in
|
98 |
+
the [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) model.
|
99 |
+
In addition to that, this model has been trained on the datasets cited
|
100 |
+
in [this paper](https://arxiv.org/pdf/2108.13897.pdf) on the first 9 aforementioned languages.
|
101 |
+
It has also been trained on [this dataset](https://huggingface.co/datasets/clarin-knext/msmarco-pl) for polish capacities.
|
102 |
+
|
103 |
+
### Evaluation Metrics
|
104 |
+
|
105 |
+
#### English
|
106 |
+
|
107 |
+
To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
|
108 |
+
[BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in **English**.
|
109 |
+
|
110 |
+
| Dataset | Recall@100 |
|
111 |
+
|:------------------|-----------:|
|
112 |
+
| Average | 0.590 |
|
113 |
+
| | |
|
114 |
+
| Arguana | 0.961 |
|
115 |
+
| CLIMATE-FEVER | 0.432 |
|
116 |
+
| DBPedia Entity | 0.371 |
|
117 |
+
| FEVER | 0.723 |
|
118 |
+
| FiQA-2018 | 0.611 |
|
119 |
+
| HotpotQA | 0.564 |
|
120 |
+
| MS MARCO | 0.825 |
|
121 |
+
| NFCorpus | 0.266 |
|
122 |
+
| NQ | 0.722 |
|
123 |
+
| Quora | 0.991 |
|
124 |
+
| SCIDOCS | 0.426 |
|
125 |
+
| SciFact | 0.864 |
|
126 |
+
| TREC-COVID | 0.092 |
|
127 |
+
| Webis-Touche-2020 | 0.415 |
|
128 |
+
|
129 |
+
#### Polish
|
130 |
+
|
131 |
+
This model has polish capacities, that are being evaluated over a subset of the [PIRBenchmark](https://github.com/sdadas/pirb).
|
132 |
+
|
133 |
+
| Dataset | Recall@100 |
|
134 |
+
|:------------------|-----------:|
|
135 |
+
| Average | 0.534 |
|
136 |
+
| | |
|
137 |
+
| arguana-pl | 0.909 |
|
138 |
+
| dbpedia-pl | 0.282 |
|
139 |
+
| fiqa-pl | 0.439 |
|
140 |
+
| hotpotqa-pl | 0.530 |
|
141 |
+
| msmarco-pl | 0.694 |
|
142 |
+
| nfcorpus-pl | 0.218 |
|
143 |
+
| nq-pl | 0.697 |
|
144 |
+
| quora-pl | 0.949 |
|
145 |
+
| scidocs-pl | 0.291 |
|
146 |
+
| scifact-pl | 0.805 |
|
147 |
+
| trec-covid-pl | 0.059 |
|
148 |
+
|
149 |
+
#### Other languages
|
150 |
+
|
151 |
+
We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
|
152 |
+
multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
|
153 |
+
for the existing languages.
|
154 |
+
|
155 |
+
| Language | Recall@100 |
|
156 |
+
|:----------------------|-----------:|
|
157 |
+
| French | 0.649 |
|
158 |
+
| German | 0.598 |
|
159 |
+
| Spanish | 0.609 |
|
160 |
+
| Japanese | 0.623 |
|
161 |
+
| Chinese (simplified) | 0.707 |
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 384,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 1536,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"transformers_version": "4.25.1",
|
23 |
+
"type_vocab_size": 1,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 250002
|
26 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6d1059af50788d7e1cf263a8cf1b553bc55716ae9b89afddabd6abf7cd5dd5b
|
3 |
+
size 428012973
|
reduction_layer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bf0496af06818c85b6d268c84aaec7913eaeb665d71f5451b50c9e9c5758b4a
|
3 |
+
size 395271
|
sinequa.metadata.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"score-scaling-factor": 3.0
|
3 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4011b5810b74e5b6348c7d6458b9dda20b5af6b759dc999f113c31888c6b6eb
|
3 |
+
size 17083132
|