change base bert to kpfbert-sbert
Browse files- README.md +2 -2
- config.json +3 -2
- config_sentence_transformers.json +3 -3
- eval/similarity_evaluation_results.csv +6 -6
- pytorch_model.bin +2 -2
- sentence_bert_config.json +2 -2
- tokenizer.json +0 -0
- tokenizer_config.json +3 -3
- vocab.txt +0 -0
README.md
CHANGED
@@ -85,7 +85,7 @@ The model was trained with the parameters:
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
89 |
```
|
90 |
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
```
|
@@ -116,7 +116,7 @@ Parameters of the fit()-Method:
|
|
116 |
## Full Model Architecture
|
117 |
```
|
118 |
SentenceTransformer(
|
119 |
-
(0): Transformer({'max_seq_length':
|
120 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
)
|
122 |
```
|
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
+
`torch.utils.data.dataloader.DataLoader` of length 3001 with parameters:
|
89 |
```
|
90 |
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
91 |
```
|
|
|
116 |
## Full Model Architecture
|
117 |
```
|
118 |
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: BertModel
|
120 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
)
|
122 |
```
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/root/.cache/torch/sentence_transformers/
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -17,9 +17,10 @@
|
|
17 |
"num_hidden_layers": 12,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
|
|
20 |
"torch_dtype": "float32",
|
21 |
"transformers_version": "4.26.1",
|
22 |
"type_vocab_size": 2,
|
23 |
"use_cache": true,
|
24 |
-
"vocab_size":
|
25 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/bongsoo_kpf-sbert-v1.1/",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
17 |
"num_hidden_layers": 12,
|
18 |
"pad_token_id": 0,
|
19 |
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "BertTokenizerFast",
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.26.1",
|
23 |
"type_vocab_size": 2,
|
24 |
"use_cache": true,
|
25 |
+
"vocab_size": 36440
|
26 |
}
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "2.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "1.
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.21.2",
|
5 |
+
"pytorch": "1.10.1"
|
6 |
}
|
7 |
}
|
eval/similarity_evaluation_results.csv
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
-
-1,-1,0.
|
3 |
-
0,-1,0.
|
4 |
-
1,-1,0.
|
5 |
-
2,-1,0.
|
6 |
-
3,-1,0.
|
7 |
-
4,-1,0.
|
|
|
1 |
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.7191056425052988,0.7076665465462761,0.5762445324673561,0.5813344414441548,0.573094893040687,0.578153904411696,0.6399484541152369,0.6432329065348992
|
3 |
+
0,-1,0.9580800992357477,0.8138681389425984,0.9402369432937032,0.8143218508877417,0.9398479601224061,0.814281495430662,0.9080216800713337,0.8081089083981797
|
4 |
+
1,-1,0.9736195473168833,0.815480807676057,0.9524687894002634,0.8154924143266667,0.9520028529401432,0.8154767134499858,0.9194615084828619,0.8110886566077198
|
5 |
+
2,-1,0.9788963779981773,0.81565234389891,0.9608720685082192,0.8156816666421048,0.9604365533581654,0.8156825977266176,0.9310448601886931,0.8117031462928667
|
6 |
+
3,-1,0.981274842167634,0.8157790988201438,0.9656924827365213,0.8158902293735341,0.9652933647637408,0.815891160455923,0.9339480889781077,0.811717150810645
|
7 |
+
4,-1,0.9817855752729285,0.8158645289305935,0.9673852709598557,0.8159244243761873,0.967004821974988,0.8159262992965975,0.9343400044158627,0.8116573446311126
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:689e801ab8058d7586aaf2b8788af806ac767774cc63103f61a78d91a3238813
|
3 |
+
size 456180269
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
-
"do_lower_case":
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": true
|
4 |
}
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -3,12 +3,12 @@
|
|
3 |
"do_basic_tokenize": true,
|
4 |
"do_lower_case": false,
|
5 |
"mask_token": "[MASK]",
|
6 |
-
"model_max_length":
|
7 |
-
"name_or_path": "/root/.cache/torch/sentence_transformers/
|
8 |
"never_split": null,
|
9 |
"pad_token": "[PAD]",
|
10 |
"sep_token": "[SEP]",
|
11 |
-
"special_tokens_map_file":
|
12 |
"strip_accents": null,
|
13 |
"tokenize_chinese_chars": true,
|
14 |
"tokenizer_class": "BertTokenizer",
|
|
|
3 |
"do_basic_tokenize": true,
|
4 |
"do_lower_case": false,
|
5 |
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"name_or_path": "/root/.cache/torch/sentence_transformers/bongsoo_kpf-sbert-v1.1/",
|
8 |
"never_split": null,
|
9 |
"pad_token": "[PAD]",
|
10 |
"sep_token": "[SEP]",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
"strip_accents": null,
|
13 |
"tokenize_chinese_chars": true,
|
14 |
"tokenizer_class": "BertTokenizer",
|
vocab.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|