Add benchmark scores of selected top-class embedding models
Browse files
README.md
CHANGED
@@ -2671,3 +2671,7 @@ You can find a code to evaluate MTEB datasets using v1 embedding [here](https://
|
|
2671 |
|:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
|
2672 |
| [sionic-ai/sionic-ai-v2](https://huggingface.co/sionic-ai/sionic-ai-v2) | 3072 | 512 | **65.23** |
|
2673 |
| [sionic-ai/sionic-ai-v1](https://huggingface.co/sionic-ai/sionic-ai-v1) | 2048 | 512 | 64.92 |
|
|
|
|
|
|
|
|
|
|
2671 |
|:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
|
2672 |
| [sionic-ai/sionic-ai-v2](https://huggingface.co/sionic-ai/sionic-ai-v2) | 3072 | 512 | **65.23** |
|
2673 |
| [sionic-ai/sionic-ai-v1](https://huggingface.co/sionic-ai/sionic-ai-v1) | 2048 | 512 | 64.92 |
|
2674 |
+
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | 64.23 |
|
2675 |
+
| [gte-large-en](https://huggingface.co/barisaydin/gte-large) | 1024 | 512 | 63.13 |
|
2676 |
+
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings/types-of-embedding-models) | 1536 | 8191 | 60.99 |
|
2677 |
+
|