--- language: - zh license: apache-2.0 base_model: sit-justin/whisper-medium-p2-moe tags: - generated_from_trainer datasets: - custom_datset model-index: - name: Whisper Small Chinese MOE Response results: [] --- # Whisper Small Chinese MOE Response This model is a fine-tuned version of [sit-justin/whisper-medium-p2-moe](https://huggingface.co/sit-justin/whisper-medium-p2-moe) on the MOE Response Chinese dataset. It achieves the following results on the evaluation set: - Loss: 0.0360 - Cer: 2.4470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1079 | 0.0852 | 200 | 0.1211 | 10.1923 | | 0.1371 | 0.1704 | 400 | 0.1223 | 8.1479 | | 0.1069 | 0.2556 | 600 | 0.1130 | 9.1791 | | 0.1131 | 0.3409 | 800 | 0.1012 | 8.6100 | | 0.0918 | 0.4261 | 1000 | 0.0844 | 6.0797 | | 0.0846 | 0.5113 | 1200 | 0.0708 | 4.6004 | | 0.0606 | 0.5965 | 1400 | 0.0594 | 4.1761 | | 0.0545 | 0.6817 | 1600 | 0.0488 | 5.9528 | | 0.044 | 0.7669 | 1800 | 0.0398 | 2.6056 | | 0.0376 | 0.8522 | 2000 | 0.0360 | 2.4470 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1