--- license: mit datasets: - squad_v2 - squad language: - en library_name: transformers tags: - deberta - deberta-v3 - question-answering - squad - squad_v2 model-index: - name: sjrhuschlee/deberta-v3-large-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 87.956 name: Exact Match - type: f1 value: 90.776 name: F1 - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - type: exact_match value: 89.290 name: Exact Match - type: f1 value: 94.985 name: F1 - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 31.167 name: Exact Match - type: f1 value: 41.787 name: F1 --- # deberta-v3-large for Extractive QA This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. This model was trained using LoRA available through the [PEFT library](https://github.com/huggingface/peft). ## Overview **Language model:** deberta-v3-large **Language:** English **Downstream-task:** Extractive QA **Training data:** SQuAD 2.0 **Eval data:** SQuAD 2.0 **Infrastructure**: 1x NVIDIA 3070 ## Model Usage ### Using Transformers This uses the merged weights (base model weights + LoRA weights) to allow for simple use in Transformers pipelines. It has the same performance as using the weights separately when using the PEFT library. ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "sjrhuschlee/deberta-v3-large-squad2" # a) Using pipelines nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) qa_input = { 'question': 'Where do I live?', 'context': 'My name is Sarah and I live in London' } res = nlp(qa_input) # b) Load model & tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### Using with Peft **NOTE**: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library. ```python #!pip install peft from peft import LoraConfig, PeftModelForQuestionAnswering from transformers import AutoModelForQuestionAnswering, AutoTokenizer model_name = "sjrhuschlee/deberta-v3-large-squad2" ```