File size: 3,857 Bytes
1d23df8 7c45a8e 1d23df8 7c45a8e 1b95302 075bd49 1b95302 c834e50 075bd49 1b95302 075bd49 1b95302 c834e50 075bd49 1b95302 1d23df8 7c45a8e 2fe493c 7c45a8e 2fe493c 7c45a8e 2fe493c 7c45a8e 2fe493c 7c45a8e 3a969f0 7c45a8e 488616c 7c45a8e 1b95302 7c45a8e 2fe493c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- en
license: mit
datasets:
- multi_nli
library_name: transformers
pipeline_tag: zero-shot-classification
tags:
- t5
- text-classification
- mnli
model-index:
- name: sjrhuschlee/flan-t5-base-mnli
results:
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: MultiNLI-matched
type: multi_nli
config: default
split: validation_matched
metrics:
- type: accuracy
value: 87.468
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: MultiNLI-mismatched
type: multi_nli
config: default
split: validation_mismatched
metrics:
- type: accuracy
value: 87.276
name: Accuracy
---
# flan-t5-base-mnli
flan-t5-base-mnli is the [flan-T5 base model](https://huggingface.co/google/flan-t5-base) fine-tuned on the [Multi-Genre Natural Language Inference (MNLI)](https://huggingface.co/datasets/multi_nli) corpus.
## Overview
- **License:** MIT
- **Language model:** flan-t5-base
- **Language:** English
- **Downstream-task:** Zero-shot Classification, Text Classification
- **Training data:** MNLI
- **Eval data:** MNLI (Matched and Mismatched)
- **Infrastructure**: 1x NVIDIA 3070
## Model Usage
Use the code below to get started with the model. The model can be loaded with the zero-shot-classification pipeline like so:
```python
from transformers import pipeline
classifier = pipeline(
'zero-shot-classification',
model='sjrhuschlee/flan-t5-base-mnli',
trust_remote_code=True,
)
```
You can then use this pipeline to classify sequences into any of the class names you specify. For example:
```python
sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)
# {'sequence': 'one day I will see the world',
# 'labels': ['travel', 'cooking', 'dancing'],
# 'scores': [0.7944864630699158, 0.10624771565198898, 0.09926578402519226]}
```
## Metrics
```bash
# MNLI
{
"eval_accuracy": 0.8746816097809476,
"eval_accuracy_mm": 0.8727624084621644,
"eval_loss": 0.4271220564842224,
"eval_loss_mm": 0.4265698492527008,
"eval_samples": 9815,
"eval_samples_mm": 9832,
}
```
## Uses
#### Direct Use
This fine-tuned model can be used for zero-shot classification tasks, including zero-shot sentence-pair classification, and zero-shot sequence classification.
#### Misuse and Out-of-scope Use
The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
sequence_to_classify = "The CEO had a strong handshake."
candidate_labels = ['male', 'female']
hypothesis_template = "This text speaks about a {} profession."
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
```
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. |