sjrhuschlee
commited on
Commit
•
f451ebc
1
Parent(s):
cb2b286
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
datasets:
|
4 |
+
- squad_v2
|
5 |
+
- squad
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- question-answering
|
11 |
+
- squad
|
12 |
+
- squad_v2
|
13 |
+
- t5
|
14 |
---
|
15 |
+
|
16 |
+
# flan-t5-large for Extractive QA
|
17 |
+
|
18 |
+
This is the [flan-t5-large](https://huggingface.co/google/flan-t5-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
19 |
+
|
20 |
+
This model was trained using LoRA available through the [PEFT library](https://github.com/huggingface/peft).
|
21 |
+
|
22 |
+
NOTE: The <cls> token must be manually added to the beginning of the question for this model to work properly. It uses the <cls> token to be able to make "no answer" predictions. The t5 tokenizer does not automatically add this special token which is why it is added manually.
|
23 |
+
|
24 |
+
## Overview
|
25 |
+
**Language model:** flan-t5-large
|
26 |
+
**Language:** English
|
27 |
+
**Downstream-task:** Extractive QA
|
28 |
+
**Training data:** SQuAD 2.0
|
29 |
+
**Eval data:** SQuAD 2.0
|
30 |
+
**Infrastructure**: 1x NVIDIA 3070
|
31 |
+
|
32 |
+
## Model Usage
|
33 |
+
|
34 |
+
### Using Transformers
|
35 |
+
This uses the merged weights (base model weights + LoRA weights) to allow for simple use in Transformers pipelines. It has the same performance as using the weights separately when using the PEFT library.
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
from transformers import(
|
39 |
+
AutoModelForQuestionAnswering,
|
40 |
+
AutoTokenizer,
|
41 |
+
pipeline
|
42 |
+
)
|
43 |
+
model_name = "sjrhuschlee/flan-t5-large-squad2"
|
44 |
+
|
45 |
+
# a) Using pipelines
|
46 |
+
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
47 |
+
qa_input = {
|
48 |
+
'question': f'{nlp.tokenizer.cls_token}Where do I live?', # '<cls>Where do I live?'
|
49 |
+
'context': 'My name is Sarah and I live in London'
|
50 |
+
}
|
51 |
+
res = nlp(qa_input)
|
52 |
+
# {'score': 0.984, 'start': 30, 'end': 37, 'answer': ' London'}
|
53 |
+
|
54 |
+
# b) Load model & tokenizer
|
55 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
57 |
+
|
58 |
+
question = f'{tokenizer.cls_token}Where do I live?' # '<cls>Where do I live?'
|
59 |
+
context = 'My name is Sarah and I live in London'
|
60 |
+
encoding = tokenizer(question, context, return_tensors="pt")
|
61 |
+
start_scores, end_scores = model(
|
62 |
+
encoding["input_ids"],
|
63 |
+
attention_mask=encoding["attention_mask"],
|
64 |
+
return_dict=False
|
65 |
+
)
|
66 |
+
|
67 |
+
all_tokens = tokenizer.convert_ids_to_tokens(input_ids[0].tolist())
|
68 |
+
answer_tokens = all_tokens[torch.argmax(start_scores):torch.argmax(end_scores) + 1]
|
69 |
+
answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
|
70 |
+
# 'London'
|
71 |
+
```
|
72 |
+
|
73 |
+
### Using with Peft
|
74 |
+
**NOTE**: This requires code in the PR https://github.com/huggingface/peft/pull/473 for the PEFT library.
|
75 |
+
```python
|
76 |
+
#!pip install peft
|
77 |
+
|
78 |
+
from peft import LoraConfig, PeftModelForQuestionAnswering
|
79 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
80 |
+
model_name = "sjrhuschlee/flan-t5-large-squad2"
|
81 |
+
```
|