sjrhuschlee
commited on
Commit
•
506ba7d
1
Parent(s):
405ade6
Update README.md
Browse files
README.md
CHANGED
@@ -18,24 +18,26 @@ tags:
|
|
18 |
This is the [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
19 |
|
20 |
## Overview
|
21 |
-
**Language model:** mdeberta-v3-base
|
22 |
-
**Language:** English
|
23 |
-
**Downstream-task:** Extractive QA
|
24 |
-
**Training data:** SQuAD 2.0
|
25 |
-
**Eval data:** SQuAD 2.0
|
26 |
-
**Infrastructure**: 1x NVIDIA T4
|
27 |
|
28 |
-
###
|
29 |
```python
|
30 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
31 |
model_name = "sjrhuschlee/mdeberta-v3-base-squad2"
|
32 |
-
|
|
|
33 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
34 |
qa_input = {
|
35 |
'question': 'Where do I live?',
|
36 |
'context': 'My name is Sarah and I live in London'
|
37 |
}
|
38 |
res = nlp(qa_input)
|
|
|
39 |
# b) Load model & tokenizer
|
40 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
18 |
This is the [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
19 |
|
20 |
## Overview
|
21 |
+
**Language model:** mdeberta-v3-base
|
22 |
+
**Language:** English
|
23 |
+
**Downstream-task:** Extractive QA
|
24 |
+
**Training data:** SQuAD 2.0
|
25 |
+
**Eval data:** SQuAD 2.0
|
26 |
+
**Infrastructure**: 1x NVIDIA T4
|
27 |
|
28 |
+
### Model Usage
|
29 |
```python
|
30 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
31 |
model_name = "sjrhuschlee/mdeberta-v3-base-squad2"
|
32 |
+
|
33 |
+
# a) Using pipelines
|
34 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
35 |
qa_input = {
|
36 |
'question': 'Where do I live?',
|
37 |
'context': 'My name is Sarah and I live in London'
|
38 |
}
|
39 |
res = nlp(qa_input)
|
40 |
+
|
41 |
# b) Load model & tokenizer
|
42 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|