import os from trainer import Trainer, TrainerArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import Vits, VitsAudioConfig from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor #output_path = os.path.dirname(os.path.abspath(__file__)) ########################################## #Change this to your dataset directory ########################################## output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig( ########################################## #Change this to your dataset directory ########################################## formatter="ljspeech", meta_file_train="metadata.csv", path="/home/ec2-user/SageMaker/tts-sage/recipes/ljspeech/vits_tts/adam" ) audio_config = VitsAudioConfig( sample_rate=48000, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None ) config = VitsConfig( audio=audio_config, run_name="tts-adam-48k", batch_size=7, eval_batch_size=12, batch_group_size=4, # num_loader_workers=8, num_loader_workers=4, num_eval_loader_workers=4, run_eval=True, test_delay_epochs=-1, epochs=100000, save_step=1000, save_checkpoints=True, save_n_checkpoints=4, save_best_after=1000, #text_cleaner="english_cleaners", text_cleaner="multilingual_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), compute_input_seq_cache=True, print_step=25, print_eval=True, mixed_precision=True, output_path=output_path, datasets=[dataset_config], cudnn_benchmark=False, ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # config is updated with the default characters if not defined in the config. tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init model model = Vits(config, ap, tokenizer, speaker_manager=None) # init the trainer and begin trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit()