File size: 5,037 Bytes
1c6b840
 
 
 
 
 
 
 
053eb5b
1c6b840
053eb5b
1c6b840
 
 
 
 
 
 
 
 
 
 
 
 
053eb5b
 
 
1c6b840
 
 
 
 
 
053eb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6b840
 
 
 
 
 
053eb5b
1c6b840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053eb5b
1c6b840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
053eb5b
1c6b840
 
 
 
 
 
053eb5b
1c6b840
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
from torch import nn
import torchaudio
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor
from .config import SpeechLLMModelConfig
from peft import LoraConfig, get_peft_model

class HubertXCNNEnoder(nn.Module):
    def __init__(self, audio_enc_dim, llm_dim, encoder_name):
        super().__init__()
        self.encoder = HubertModel.from_pretrained(encoder_name)
        self.cnn = nn.Sequential(
            nn.ReLU(),
            nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0),
            nn.ReLU(),
            nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0),
            nn.ReLU(),
            nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0),
        )

    def forward(self, x):
        x = self.encoder(x).last_hidden_state
        x = self.cnn(x.transpose(1, 2)).transpose(1, 2)
        return x
    
    def return_device(self):
        return next(self.parameters()).device

class SpeechLLMModel(PreTrainedModel):
    config_class = SpeechLLMModelConfig

    def __init__(self, config):
        super().__init__(config)
        self.audio_processor = AutoProcessor.from_pretrained(config.audio_processor_name)
        self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim, config.audio_encoder_name)

        self.llm_model = AutoModelForCausalLM.from_pretrained(config.llm_model_checkpoint)
        self.llm_tokenizer = AutoTokenizer.from_pretrained(config.llm_model_name)


        # self.llm_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
        # self.llm_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

        # peft_config = LoraConfig(
        #     r=4,
        #     lora_alpha=8,
        #     target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
        #     lora_dropout=0.05,
        #     task_type="CAUSAL_LM",
        # )
        # self.llm_model = get_peft_model(self.llm_model, peft_config)

    def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
        batch_size = mel.shape[0]

        with torch.no_grad():
            speech_embeds = self.audio_encoder(mel)
        embedder = self.llm_model.model.embed_tokens
        pre_prompt_embeds = embedder(pre_tokenized_ids)
        post_prompt_embeds = embedder(post_tokenized_ids)
        output_prompt_embeds = embedder(output_tokenized_ids)

        combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
        atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)

        input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
        label_ids = torch.cat([
            torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100,
            output_tokenized_ids
        ], 1).to(combined_embeds.device).to(torch.int64)
        return combined_embeds, atts, label_ids

    def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None):
        combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
        outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask)
        return outputs
    
    def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000):
        device = self.audio_encoder.return_device()
        pre_speech_prompt = f'''Instruction:
{instruction}

Input: 
<speech>'''
        post_speech_prompt = f'''</speech>

Output:'''
        output_prompt = '\n<s>'

        with torch.no_grad():
            wav_tensor, sr = torchaudio.load(audio_path)
            wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values

            pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
            post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
            output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]

            combined_embeds, atts, label_ids = self.encode(wav_tensor.to(device), pre_tokenized_ids.to(device), post_tokenized_ids.to(device), output_tokenized_ids.to(device))

            out = self.llm_model.generate(
                inputs_embeds=combined_embeds,
                max_new_tokens=max_new_tokens,
            ).cpu().tolist()[0]

            output_text = self.llm_tokenizer.decode(out, skip_special_tokens=True)
            return output_text