|
import torch |
|
from torch import nn |
|
import torchaudio |
|
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor |
|
from .config import SpeechLLMModelConfig |
|
from peft import LoraConfig, get_peft_model |
|
|
|
class HubertXCNNEnoder(nn.Module): |
|
def __init__(self, audio_enc_dim, llm_dim, encoder_name): |
|
super().__init__() |
|
self.encoder = HubertModel.from_pretrained(encoder_name) |
|
self.cnn = nn.Sequential( |
|
nn.ReLU(), |
|
nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0), |
|
nn.ReLU(), |
|
nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0), |
|
nn.ReLU(), |
|
nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x).last_hidden_state |
|
x = self.cnn(x.transpose(1, 2)).transpose(1, 2) |
|
return x |
|
|
|
def return_device(self): |
|
return next(self.parameters()).device |
|
|
|
class SpeechLLMModel(PreTrainedModel): |
|
config_class = SpeechLLMModelConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.audio_processor = AutoProcessor.from_pretrained(config.audio_processor_name) |
|
self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim, config.audio_encoder_name) |
|
|
|
self.llm_model = AutoModelForCausalLM.from_pretrained(config.llm_model_checkpoint) |
|
self.llm_tokenizer = AutoTokenizer.from_pretrained(config.llm_model_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids): |
|
batch_size = mel.shape[0] |
|
|
|
with torch.no_grad(): |
|
speech_embeds = self.audio_encoder(mel) |
|
embedder = self.llm_model.model.embed_tokens |
|
pre_prompt_embeds = embedder(pre_tokenized_ids) |
|
post_prompt_embeds = embedder(post_tokenized_ids) |
|
output_prompt_embeds = embedder(output_tokenized_ids) |
|
|
|
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1) |
|
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device) |
|
|
|
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1] |
|
label_ids = torch.cat([ |
|
torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100, |
|
output_tokenized_ids |
|
], 1).to(combined_embeds.device).to(torch.int64) |
|
return combined_embeds, atts, label_ids |
|
|
|
def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None): |
|
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids) |
|
outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask) |
|
return outputs |
|
|
|
def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000): |
|
device = self.audio_encoder.return_device() |
|
pre_speech_prompt = f'''Instruction: |
|
{instruction} |
|
|
|
Input: |
|
<speech>''' |
|
post_speech_prompt = f'''</speech> |
|
|
|
Output:''' |
|
output_prompt = '\n<s>' |
|
|
|
with torch.no_grad(): |
|
wav_tensor, sr = torchaudio.load(audio_path) |
|
wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values |
|
|
|
pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"] |
|
post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"] |
|
output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
combined_embeds, atts, label_ids = self.encode(wav_tensor.to(device), pre_tokenized_ids.to(device), post_tokenized_ids.to(device), output_tokenized_ids.to(device)) |
|
|
|
out = self.llm_model.generate( |
|
inputs_embeds=combined_embeds, |
|
max_new_tokens=max_new_tokens, |
|
).cpu().tolist()[0] |
|
|
|
output_text = self.llm_tokenizer.decode(out, skip_special_tokens=True) |
|
return output_text |
|
|
|
|