---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: isolation_forest.pkl
widget:
structuredData:
x0:
- 1.9137876638235471
- -1.8264435506813366
- -2.1884262678924737
x1:
- 2.021017965584703
- -1.895103662902048
- -2.1443081355382363
---
# Model description
[More Information Needed]
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|----------------------|---------------------------------------------------------------------------------------------|
| memory | |
| steps | [('scaler', StandardScaler()), ('model', IsolationForest(max_samples=100, random_state=0))] |
| verbose | False |
| scaler | StandardScaler() |
| model | IsolationForest(max_samples=100, random_state=0) |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| model__bootstrap | False |
| model__contamination | auto |
| model__max_features | 1.0 |
| model__max_samples | 100 |
| model__n_estimators | 100 |
| model__n_jobs | |
| model__random_state | 0 |
| model__verbose | 0 |
| model__warm_start | False |
Pipeline(steps=[('scaler', StandardScaler()),('model', IsolationForest(max_samples=100, random_state=0))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scaler', StandardScaler()),('model', IsolationForest(max_samples=100, random_state=0))])
StandardScaler()
IsolationForest(max_samples=100, random_state=0)