krevas commited on
Commit
5bf704f
1 Parent(s): b9bbe01

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dialog-KoELECTRA
2
+
3
+ Github : [https://github.com/skplanetml/Dialog-KoELECTRA](https://github.com/skplanetml/Dialog-KoELECTRA)
4
+
5
+ ## Introduction
6
+
7
+ **Dialog-KoELECTRA** is a language model specialized for dialogue. It was trained with 22GB colloquial and written style Korean text data. Dialog-ELECTRA model is made based on the [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) model. ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU.
8
+
9
+ <br>
10
+
11
+ ## Released Models
12
+
13
+ We are initially releasing small version pre-trained model.
14
+ The model was trained on Korean text. We hope to release other models, such as base/large models, in the future.
15
+
16
+ | Model | Layers | Hidden Size | Params | Max<br/>Seq Len | Learning<br/>Rate | Batch Size | Train Steps |
17
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
18
+ | Dialog-KoELECTRA-Small | 12 | 256 | 14M | 128 | 1e-4 | 512 | 700K |
19
+
20
+ <br>
21
+
22
+ ## Model Performance
23
+
24
+ Dialog-KoELECTRA shows strong performance in conversational downstream tasks.
25
+
26
+ | | **NSMC**<br/>(acc) | **Question Pair**<br/>(acc) | **Korean-Hate-Speech**<br/>(F1) | **Naver NER**<br/>(F1) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) |
27
+ | :--------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: |
28
+ | DistilKoBERT | 88.60 | 92.48 | 60.72 | 84.65 | 72.00 | 72.59 |
29
+ | **Dialog-KoELECTRA-Small** | **90.01** | **94.99** | **68.26** | **85.51** | **78.54** | **78.96** |
30
+
31
+ <br>
32
+
33
+ ## Train Data
34
+
35
+
36
+ <table class="tg">
37
+ <thead>
38
+ <tr>
39
+ <th class="tg-c3ow"></th>
40
+ <th class="tg-c3ow">corpus name</th>
41
+ <th class="tg-c3ow">size</th>
42
+ </tr>
43
+ </thead>
44
+ <tbody>
45
+ <tr>
46
+ <td class="tg-c3ow" rowspan="4">dialog</td>
47
+ <td class="tg-0pky"><a href="https://aihub.or.kr/aidata/85" target="_blank" rel="noopener noreferrer">Aihub Korean dialog corpus</a></td>
48
+ <td class="tg-c3ow" rowspan="4">7GB</td>
49
+ </tr>
50
+ <tr>
51
+ <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Spoken corpus</a></td>
52
+ </tr>
53
+ <tr>
54
+ <td class="tg-0pky"><a href="https://github.com/songys/Chatbot_data" target="_blank" rel="noopener noreferrer">Korean chatbot data</a></td>
55
+ </tr>
56
+ <tr>
57
+ <td class="tg-0pky"><a href="https://github.com/Beomi/KcBERT" target="_blank" rel="noopener noreferrer">KcBERT</a></td>
58
+ </tr>
59
+ <tr>
60
+ <td class="tg-c3ow" rowspan="2">written</td>
61
+ <td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Newspaper corpus</a></td>
62
+ <td class="tg-c3ow" rowspan="2">15GB</td>
63
+ </tr>
64
+ <tr>
65
+ <td class="tg-0pky"><a href="https://github.com/lovit/namuwikitext" target="_blank" rel="noopener noreferrer">namuwikitext</a></td>
66
+ </tr>
67
+ </tbody>
68
+ </table>
69
+
70
+ <br>
71
+
72
+ ## Vocabulary
73
+
74
+ We applied morpheme analysis using [huggingface_konlpy](https://github.com/lovit/huggingface_konlpy) when creating a vocabulary dictionary.
75
+ As a result of the experiment, it showed better performance than a vocabulary dictionary created without applying morpheme analysis.
76
+ <table>
77
+ <thead>
78
+ <tr>
79
+ <th>vocabulary size</th>
80
+ <th>unused token size</th>
81
+ <th>limit alphabet</th>
82
+ <th>min frequency</th>
83
+ </tr>
84
+ </thead>
85
+ <tbody>
86
+ <tr>
87
+ <td>40,000</td>
88
+ <td>500</td>
89
+ <td>6,000</td>
90
+ <td>3</td>
91
+ </tr>
92
+ </tbody>
93
+ </table>
94
+
95
+ <br>