File size: 2,479 Bytes
3a26b16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: skrl
tags:
- deep-reinforcement-learning
- reinforcement-learning
- skrl
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 493.73 +/- 0.58
name: Total reward (mean)
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: IsaacGymEnvs-Cartpole
type: IsaacGymEnvs-Cartpole
---
<!-- ---
torch: 493.73 +/- 0.58
jax: 492.06 +/- 3.58
numpy: 491.92 +/- 0.57
--- -->
# IsaacGymEnvs-Cartpole-PPO
Trained agent for [NVIDIA Isaac Gym Preview](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs) environments.
- **Task:** Cartpole
- **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html)
# Usage (with skrl)
Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts.
* PyTorch
```python
from skrl.utils.huggingface import download_model_from_huggingface
# assuming that there is an agent named `agent`
path = download_model_from_huggingface("skrl/IsaacGymEnvs-Cartpole-PPO", filename="agent.pt")
agent.load(path)
```
* JAX
```python
from skrl.utils.huggingface import download_model_from_huggingface
# assuming that there is an agent named `agent`
path = download_model_from_huggingface("skrl/IsaacGymEnvs-Cartpole-PPO", filename="agent.pickle")
agent.load(path)
```
# Hyperparameters
Note: Undefined parameters keep their values by default.
```python
# https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters
cfg = PPO_DEFAULT_CONFIG.copy()
cfg["rollouts"] = 16 # memory_size
cfg["learning_epochs"] = 8
cfg["mini_batches"] = 1 # 16 * 512 / 8192
cfg["discount_factor"] = 0.99
cfg["lambda"] = 0.95
cfg["learning_rate"] = 3e-4
cfg["learning_rate_scheduler"] = KLAdaptiveRL
cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008}
cfg["random_timesteps"] = 0
cfg["learning_starts"] = 0
cfg["grad_norm_clip"] = 1.0
cfg["ratio_clip"] = 0.2
cfg["value_clip"] = 0.2
cfg["clip_predicted_values"] = True
cfg["entropy_loss_scale"] = 0.0
cfg["value_loss_scale"] = 2.0
cfg["kl_threshold"] = 0
cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.1
cfg["state_preprocessor"] = RunningStandardScaler
cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device}
cfg["value_preprocessor"] = RunningStandardScaler
cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device}
```
|