Experiment1
Browse files
README.md
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
library_name: skrl
|
3 |
tags:
|
4 |
- deep-reinforcement-learning
|
5 |
-
- reinforcement-learning
|
6 |
- skrl
|
7 |
model-index:
|
8 |
- name: PPO
|
@@ -41,12 +40,12 @@ agent.load(path)
|
|
41 |
```python
|
42 |
# https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters
|
43 |
cfg_ppo = PPO_DEFAULT_CONFIG.copy()
|
44 |
-
cfg_ppo["rollouts"] =
|
45 |
-
cfg_ppo["learning_epochs"] =
|
46 |
-
cfg_ppo["mini_batches"] = 4
|
47 |
cfg_ppo["discount_factor"] = 0.99
|
48 |
-
cfg_ppo["lambda"] =
|
49 |
-
cfg_ppo["learning_rate"] =
|
50 |
cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL
|
51 |
cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.016}
|
52 |
cfg_ppo["random_timesteps"] = 0
|
@@ -56,7 +55,7 @@ cfg_ppo["ratio_clip"] = 0.2
|
|
56 |
cfg_ppo["value_clip"] = 0.2
|
57 |
cfg_ppo["clip_predicted_values"] = True
|
58 |
cfg_ppo["entropy_loss_scale"] = 0.0
|
59 |
-
cfg_ppo["value_loss_scale"] = 2.
|
60 |
cfg_ppo["kl_threshold"] = 0
|
61 |
cfg_ppo["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01
|
62 |
cfg_ppo["state_preprocessor"] = RunningStandardScaler
|
@@ -66,4 +65,5 @@ cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device}
|
|
66 |
# logging to TensorBoard and writing checkpoints
|
67 |
cfg_ppo["experiment"]["write_interval"] = 800
|
68 |
cfg_ppo["experiment"]["checkpoint_interval"] = 8000
|
69 |
-
|
|
|
|
2 |
library_name: skrl
|
3 |
tags:
|
4 |
- deep-reinforcement-learning
|
|
|
5 |
- skrl
|
6 |
model-index:
|
7 |
- name: PPO
|
|
|
40 |
```python
|
41 |
# https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters
|
42 |
cfg_ppo = PPO_DEFAULT_CONFIG.copy()
|
43 |
+
cfg_ppo["rollouts"] = 20 # memory_size
|
44 |
+
cfg_ppo["learning_epochs"] = 10
|
45 |
+
cfg_ppo["mini_batches"] = 4 # 16 * 8192 / 32768
|
46 |
cfg_ppo["discount_factor"] = 0.99
|
47 |
+
cfg_ppo["lambda"] = 1
|
48 |
+
cfg_ppo["learning_rate"] = 6e-4
|
49 |
cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL
|
50 |
cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.016}
|
51 |
cfg_ppo["random_timesteps"] = 0
|
|
|
55 |
cfg_ppo["value_clip"] = 0.2
|
56 |
cfg_ppo["clip_predicted_values"] = True
|
57 |
cfg_ppo["entropy_loss_scale"] = 0.0
|
58 |
+
cfg_ppo["value_loss_scale"] = 2.5
|
59 |
cfg_ppo["kl_threshold"] = 0
|
60 |
cfg_ppo["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01
|
61 |
cfg_ppo["state_preprocessor"] = RunningStandardScaler
|
|
|
65 |
# logging to TensorBoard and writing checkpoints
|
66 |
cfg_ppo["experiment"]["write_interval"] = 800
|
67 |
cfg_ppo["experiment"]["checkpoint_interval"] = 8000
|
68 |
+
|
69 |
+
```
|