Push more trained LunarLander-v2 model
Browse files- README.md +37 -0
- aakash-ppo-lander-v2-more.zip +3 -0
- aakash-ppo-lander-v2-more/_stable_baselines3_version +1 -0
- aakash-ppo-lander-v2-more/data +94 -0
- aakash-ppo-lander-v2-more/policy.optimizer.pth +3 -0
- aakash-ppo-lander-v2-more/policy.pth +3 -0
- aakash-ppo-lander-v2-more/pytorch_variables.pth +3 -0
- aakash-ppo-lander-v2-more/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.38 +/- 21.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
aakash-ppo-lander-v2-more.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc7b33b105fe68af57eb8d59c3dd0b410d8d3c9ca0b9f61fbbb3090defb49392
|
3 |
+
size 147218
|
aakash-ppo-lander-v2-more/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
aakash-ppo-lander-v2-more/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9a8fd9670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9a8fd9700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9a8fd9790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9a8fd9820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe9a8fd98b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe9a8fd9940>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9a8fd99d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe9a8fd9a60>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9a8fd9af0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9a8fd9b80>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9a8fd9c10>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe9a8fd7240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670480185610536965,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2Gwj32QGu6BKTMuXv9mrlVAHG7wtoZOQAAgD8AAIA/+lIvPsP3bDtlme26chYruZh2Bj3OCyU5AACAPwAAgD8aDba96EKfPzAMDr8zwwG/GrWZvPj0Gb4AAAAAAAAAAEC8PL7hEm4+ONmPPsUNgb7nLP08OsPpuwAAAAAAAAAAGkk/PUkXXT9Dy988nFabvni+Nzw+ioG9AAAAAAAAAADmsyc97EnxucPG2bqzft61g73BudLU/DkAAIA/AACAPwANPj1I4fozzsFqu6B36bqS3Nw6QrC7uwAAgD8AAIA/mpDCPFIY77l2ymS8sb7MPNmXhbs6a2K8AACAPwAAgD/NNis89oxnulauVbeaZ1SxfcPPugpjcjYAAIA/AACAP5rNqLwU7qo56uczPPnRMrxCVdo7W441PAAAAAAAAAAAc66aPRTGg7q77QI3DGQlMmusILs8PRi2AACAPwAAgD9NNj69BEJKPhksID3vgFq+OuTWPP2ohTsAAAAAAAAAABpBNT24FoS5eP4BvC7wgbnnUmO6aCxUOQAAgD8AAIA/XVxbvrjOaj99Ycg6ww2dvrbQ2L1WsIC8AAAAAAAAAAAAkIK8+coIP5IxsD1rMZK+o9WJPcbSAT4AAAAAAAAAAM1tNT1IE5u67guOOnFoFjb/F/Q5kkKhuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1iNJSw+b0CUhpRSlIwBbJRNZwGMAXSUR0CX9KC4z7/GdX2UKGgGaAloD0MIfNKJBBPLckCUhpRSlGgVTRUBaBZHQJf0zhIe5nV1fZQoaAZoCWgPQwiH/gku1iBtQJSGlFKUaBVNNwFoFkdAl/URW912aHV9lChoBmgJaA9DCCUH7GpyeHBAlIaUUpRoFU2CAWgWR0CX9ddt2s7udX2UKGgGaAloD0MIIXam0PlUcUCUhpRSlGgVTUQBaBZHQJf2x+c6Nl11fZQoaAZoCWgPQwjsvfiiPaVuQJSGlFKUaBVNRAFoFkdAl/dN3GGVRnV9lChoBmgJaA9DCK0UArnEtHFAlIaUUpRoFU0dAWgWR0CX92nLq2SddX2UKGgGaAloD0MIhIB8CdVhcUCUhpRSlGgVTUEBaBZHQJf4wfW+XZ51fZQoaAZoCWgPQwiafLPNDYdtQJSGlFKUaBVNdAFoFkdAl/n20NSZSnV9lChoBmgJaA9DCPYmhuTkmW1AlIaUUpRoFU1iAWgWR0CX+xtNSIgvdX2UKGgGaAloD0MIRIts53vXbECUhpRSlGgVTTsBaBZHQJf7aqxTsIF1fZQoaAZoCWgPQwh0CvKz0ZlxQJSGlFKUaBVNbQFoFkdAl/uMV1wHaHV9lChoBmgJaA9DCFhYcD9gjXBAlIaUUpRoFU1uAWgWR0CX++lVtGd7dX2UKGgGaAloD0MIgZICC+AHcUCUhpRSlGgVTVABaBZHQJf8wqNIbwV1fZQoaAZoCWgPQwiIKvwZ3vNtQJSGlFKUaBVNRAFoFkdAl/z9YKYzBXV9lChoBmgJaA9DCCDURQrl62BAlIaUUpRoFU3oA2gWR0CYSR2w3YL9dX2UKGgGaAloD0MIl3SUg9khWECUhpRSlGgVTegDaBZHQJhKKjgydnV1fZQoaAZoCWgPQwiIghlTsDVYQJSGlFKUaBVN6ANoFkdAmEqgt8NQTHV9lChoBmgJaA9DCGr5gas8M1tAlIaUUpRoFU3oA2gWR0CYS0mxMWXUdX2UKGgGaAloD0MIQ3Bcxk1gXECUhpRSlGgVTegDaBZHQJhMz557gKp1fZQoaAZoCWgPQwhGYRdFD3phQJSGlFKUaBVN6ANoFkdAmE7LhrFfiXV9lChoBmgJaA9DCFhv1ArTyVhAlIaUUpRoFU3oA2gWR0CYT+gb6xgRdX2UKGgGaAloD0MIoSx8fa1AXECUhpRSlGgVTegDaBZHQJhQGHuZ1FJ1fZQoaAZoCWgPQwiN0xBVeFpgQJSGlFKUaBVN6ANoFkdAmFKLO/tY0XV9lChoBmgJaA9DCGed8X1xH1hAlIaUUpRoFU3oA2gWR0CYVKM3IdU9dX2UKGgGaAloD0MIqMe2DDguU0CUhpRSlGgVTegDaBZHQJhWefvnbIt1fZQoaAZoCWgPQwizXaEPlmVdQJSGlFKUaBVN6ANoFkdAmFb1ZLZi/nV9lChoBmgJaA9DCAQAx549X1JAlIaUUpRoFU3oA2gWR0CYVy2aDwpfdX2UKGgGaAloD0MImgmGcw2NWECUhpRSlGgVTegDaBZHQJhXvWkJrtV1fZQoaAZoCWgPQwiZK4NqgxdWQJSGlFKUaBVN6ANoFkdAmFjoVVPva3V9lChoBmgJaA9DCC7+tidIwFxAlIaUUpRoFU3oA2gWR0CYWSp7TlT4dX2UKGgGaAloD0MIAtTUsrWvcUCUhpRSlGgVTb8CaBZHQJiQbHGS6lN1fZQoaAZoCWgPQwijVwOUhkdvQJSGlFKUaBVN6wJoFkdAmJChScbzb3V9lChoBmgJaA9DCGZOl8XERWpAlIaUUpRoFU1hAmgWR0CYl9vE0iyIdX2UKGgGaAloD0MIsDkHz4Rva0CUhpRSlGgVTWcDaBZHQJimBstTUAl1fZQoaAZoCWgPQwh+ObNdoXNTQJSGlFKUaBVN6ANoFkdAmKcYGt6ol3V9lChoBmgJaA9DCAU25+CZXF1AlIaUUpRoFU3oA2gWR0CYp3YqoZQ6dX2UKGgGaAloD0MIkPeqlQmxWECUhpRSlGgVTegDaBZHQJin9LuhK151fZQoaAZoCWgPQwghdNAlHHhfQJSGlFKUaBVN6ANoFkdAmKrRM8HObHV9lChoBmgJaA9DCG5t4Xmp2ltAlIaUUpRoFU3oA2gWR0CYq8PRzBAOdX2UKGgGaAloD0MI2EXRAx+EXECUhpRSlGgVTegDaBZHQJir8nQY1pF1fZQoaAZoCWgPQwhkXdxGAw9dQJSGlFKUaBVN6ANoFkdAmLA0wWWQfnV9lChoBmgJaA9DCAvQtpr1TWBAlIaUUpRoFU3oA2gWR0CYshcuanaWdX2UKGgGaAloD0MIuvWaHhS4W0CUhpRSlGgVTegDaBZHQJiyjzundft1fZQoaAZoCWgPQwjChqdXytxWQJSGlFKUaBVN6ANoFkdAmLNS2MKkVXV9lChoBmgJaA9DCBqk4CnkimFAlIaUUpRoFU3oA2gWR0CYtH6JIlMRdX2UKGgGaAloD0MIMlUwKqn2ZECUhpRSlGgVTegDaBZHQJi00mb9ZRt1fZQoaAZoCWgPQwhTQUXVr1FtQJSGlFKUaBVNZgFoFkdAmM134sVclnV9lChoBmgJaA9DCBTLLa2GDnBAlIaUUpRoFU1RAWgWR0CYz0mXPZ7HdX2UKGgGaAloD0MIyJV6FoTlYUCUhpRSlGgVTegDaBZHQJjl3GACnxd1fZQoaAZoCWgPQwj2Yign2mJVQJSGlFKUaBVN6ANoFkdAmOYEZNwiq3V9lChoBmgJaA9DCMQlx53ScFFAlIaUUpRoFU3oA2gWR0CY6uB3iaRZdX2UKGgGaAloD0MI8guvJHl/W0CUhpRSlGgVTegDaBZHQJj3YBp5/sp1fZQoaAZoCWgPQwh4gCctXOhcQJSGlFKUaBVN6ANoFkdAmPi5hfBvaXV9lChoBmgJaA9DCM4avK9KImRAlIaUUpRoFU3oA2gWR0CY+USVGCqZdX2UKGgGaAloD0MISKmEJ/RrX0CUhpRSlGgVTegDaBZHQJj9QKTjebd1fZQoaAZoCWgPQwj9Ma1NY2lZQJSGlFKUaBVN6ANoFkdAmP1wh0QsgHV9lChoBmgJaA9DCCUEq+rlJV1AlIaUUpRoFU3oA2gWR0CZAfsOXmeUdX2UKGgGaAloD0MIFjPC24PubUCUhpRSlGgVTbUDaBZHQJkCWr8zhxZ1fZQoaAZoCWgPQwi7Q4oBEhNiQJSGlFKUaBVN6ANoFkdAmQPs5S3sonV9lChoBmgJaA9DCCwOZ3615GJAlIaUUpRoFU3oA2gWR0CZBGtbcGkfdX2UKGgGaAloD0MIRMNi1LU4WkCUhpRSlGgVTegDaBZHQJkGsxEfDDV1fZQoaAZoCWgPQwgBwLFnT1thQJSGlFKUaBVN6ANoFkdAmQciD28IzHV9lChoBmgJaA9DCBe5p6s7yldAlIaUUpRoFU3oA2gWR0CZIQFj/dZadX2UKGgGaAloD0MIjlw3pTypYECUhpRSlGgVTegDaBZHQJkjL91loUV1fZQoaAZoCWgPQwgvNq0UgvhuQJSGlFKUaBVNKAFoFkdAmS1AhbGFSXV9lChoBmgJaA9DCMprJXQXt3FAlIaUUpRoFU1LAWgWR0CZQmcENe+mdX2UKGgGaAloD0MIkL5J06D7XECUhpRSlGgVTegDaBZHQJlDMliSaE11fZQoaAZoCWgPQwhVa2EW2mJjQJSGlFKUaBVN6ANoFkdAmUNcOskpqnV9lChoBmgJaA9DCHaNlgM9b1xAlIaUUpRoFU3oA2gWR0CZSMcrAgxKdX2UKGgGaAloD0MIo8nFGNgpbECUhpRSlGgVTY8DaBZHQJlSZMg2ZRd1fZQoaAZoCWgPQwjcEU4LXklZQJSGlFKUaBVN6ANoFkdAmVc+2mYShHV9lChoBmgJaA9DCA38qIb9s1lAlIaUUpRoFU3oA2gWR0CZWJjqv/zbdX2UKGgGaAloD0MIBTOmYI3Kb0CUhpRSlGgVTXkDaBZHQJla5IWgvlF1fZQoaAZoCWgPQwixUGuad+teQJSGlFKUaBVN6ANoFkdAmV0bJwKjSHV9lChoBmgJaA9DCP7TDRT46WFAlIaUUpRoFU3oA2gWR0CZXVFFlTWHdX2UKGgGaAloD0MIhlRRvMqbW0CUhpRSlGgVTegDaBZHQJljEIjW07d1fZQoaAZoCWgPQwg4Sl6dY2pcQJSGlFKUaBVN6ANoFkdAmWU2QXAM2HV9lChoBmgJaA9DCBKkUuxoillAlIaUUpRoFU3oA2gWR0CZZeoF3Y+TdX2UKGgGaAloD0MI0qbqHtl7WECUhpRSlGgVTegDaBZHQJlpQr8R+Sd1fZQoaAZoCWgPQwhbYfpegxRwQJSGlFKUaBVN/wJoFkdAmW0PCAMDwHV9lChoBmgJaA9DCGQke4Sa9FVAlIaUUpRoFU3oA2gWR0CZh1NTtLL7dX2UKGgGaAloD0MIwVYJFofocUCUhpRSlGgVTYQBaBZHQJmJOrJbMX91fZQoaAZoCWgPQwiFB82uu1twQJSGlFKUaBVN4gJoFkdAmY2RwMpgC3V9lChoBmgJaA9DCHhjQWFQbW9AlIaUUpRoFU27AWgWR0CZmXuDjBEbdX2UKGgGaAloD0MIeuI5W0ChWUCUhpRSlGgVTegDaBZHQJmiTHaN+9d1fZQoaAZoCWgPQwjcnbXbrttiQJSGlFKUaBVN6ANoFkdAmaJzoUzsQnV9lChoBmgJaA9DCGPyBpj56VdAlIaUUpRoFU3oA2gWR0CZp43PiT+vdX2UKGgGaAloD0MIN6eSAaAzaUCUhpRSlGgVTXoDaBZHQJmsXEgntv51fZQoaAZoCWgPQwhxHHi13NJjQJSGlFKUaBVN6ANoFkdAma9t2cJ+lXV9lChoBmgJaA9DCCO/fogN21tAlIaUUpRoFU3oA2gWR0CZtvq/ub7TdX2UKGgGaAloD0MIoS+9/TmIcECUhpRSlGgVTTwBaBZHQJm3sPmPo3d1fZQoaAZoCWgPQwg8MIDwobBYQJSGlFKUaBVN6ANoFkdAmbkPj4pMH3V9lChoBmgJaA9DCDAQBMhQfWBAlIaUUpRoFU3oA2gWR0CZuUKhL5ARdX2UKGgGaAloD0MIaXHGMKfJZECUhpRSlGgVTegDaBZHQJm9nWSU1Q91fZQoaAZoCWgPQwhybagYZ9BhQJSGlFKUaBVN6ANoFkdAmb93W4EwFnV9lChoBmgJaA9DCEnzx7S2BGBAlIaUUpRoFU3oA2gWR0CZwh7+kxh2dX2UKGgGaAloD0MI0/VE14UBckCUhpRSlGgVTWsBaBZHQJnEfMTviLl1fZQoaAZoCWgPQwjQ8dHijIZUQJSGlFKUaBVN6ANoFkdAmcUS/O+qR3V9lChoBmgJaA9DCAFPWris/1VAlIaUUpRoFU3oA2gWR0CZyFcMEzO5dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 252,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
aakash-ppo-lander-v2-more/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d21212d88d9798fab9d51497ea468284ebed440eefe95c13ccb3be32a9dda52
|
3 |
+
size 87929
|
aakash-ppo-lander-v2-more/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d16938cf666f8b22b22bf749298cb0320dfd3e92fc59f67bfcdcae503b3bec5d
|
3 |
+
size 43201
|
aakash-ppo-lander-v2-more/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
aakash-ppo-lander-v2-more/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9a8fd9670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9a8fd9700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9a8fd9790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9a8fd9820>", "_build": "<function ActorCriticPolicy._build at 0x7fe9a8fd98b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9a8fd9940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9a8fd99d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9a8fd9a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9a8fd9af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9a8fd9b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9a8fd9c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9a8fd7240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670480185610536965, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2Gwj32QGu6BKTMuXv9mrlVAHG7wtoZOQAAgD8AAIA/+lIvPsP3bDtlme26chYruZh2Bj3OCyU5AACAPwAAgD8aDba96EKfPzAMDr8zwwG/GrWZvPj0Gb4AAAAAAAAAAEC8PL7hEm4+ONmPPsUNgb7nLP08OsPpuwAAAAAAAAAAGkk/PUkXXT9Dy988nFabvni+Nzw+ioG9AAAAAAAAAADmsyc97EnxucPG2bqzft61g73BudLU/DkAAIA/AACAPwANPj1I4fozzsFqu6B36bqS3Nw6QrC7uwAAgD8AAIA/mpDCPFIY77l2ymS8sb7MPNmXhbs6a2K8AACAPwAAgD/NNis89oxnulauVbeaZ1SxfcPPugpjcjYAAIA/AACAP5rNqLwU7qo56uczPPnRMrxCVdo7W441PAAAAAAAAAAAc66aPRTGg7q77QI3DGQlMmusILs8PRi2AACAPwAAgD9NNj69BEJKPhksID3vgFq+OuTWPP2ohTsAAAAAAAAAABpBNT24FoS5eP4BvC7wgbnnUmO6aCxUOQAAgD8AAIA/XVxbvrjOaj99Ycg6ww2dvrbQ2L1WsIC8AAAAAAAAAAAAkIK8+coIP5IxsD1rMZK+o9WJPcbSAT4AAAAAAAAAAM1tNT1IE5u67guOOnFoFjb/F/Q5kkKhuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ1iNJSw+b0CUhpRSlIwBbJRNZwGMAXSUR0CX9KC4z7/GdX2UKGgGaAloD0MIfNKJBBPLckCUhpRSlGgVTRUBaBZHQJf0zhIe5nV1fZQoaAZoCWgPQwiH/gku1iBtQJSGlFKUaBVNNwFoFkdAl/URW912aHV9lChoBmgJaA9DCCUH7GpyeHBAlIaUUpRoFU2CAWgWR0CX9ddt2s7udX2UKGgGaAloD0MIIXam0PlUcUCUhpRSlGgVTUQBaBZHQJf2x+c6Nl11fZQoaAZoCWgPQwjsvfiiPaVuQJSGlFKUaBVNRAFoFkdAl/dN3GGVRnV9lChoBmgJaA9DCK0UArnEtHFAlIaUUpRoFU0dAWgWR0CX92nLq2SddX2UKGgGaAloD0MIhIB8CdVhcUCUhpRSlGgVTUEBaBZHQJf4wfW+XZ51fZQoaAZoCWgPQwiafLPNDYdtQJSGlFKUaBVNdAFoFkdAl/n20NSZSnV9lChoBmgJaA9DCPYmhuTkmW1AlIaUUpRoFU1iAWgWR0CX+xtNSIgvdX2UKGgGaAloD0MIRIts53vXbECUhpRSlGgVTTsBaBZHQJf7aqxTsIF1fZQoaAZoCWgPQwh0CvKz0ZlxQJSGlFKUaBVNbQFoFkdAl/uMV1wHaHV9lChoBmgJaA9DCFhYcD9gjXBAlIaUUpRoFU1uAWgWR0CX++lVtGd7dX2UKGgGaAloD0MIgZICC+AHcUCUhpRSlGgVTVABaBZHQJf8wqNIbwV1fZQoaAZoCWgPQwiIKvwZ3vNtQJSGlFKUaBVNRAFoFkdAl/z9YKYzBXV9lChoBmgJaA9DCCDURQrl62BAlIaUUpRoFU3oA2gWR0CYSR2w3YL9dX2UKGgGaAloD0MIl3SUg9khWECUhpRSlGgVTegDaBZHQJhKKjgydnV1fZQoaAZoCWgPQwiIghlTsDVYQJSGlFKUaBVN6ANoFkdAmEqgt8NQTHV9lChoBmgJaA9DCGr5gas8M1tAlIaUUpRoFU3oA2gWR0CYS0mxMWXUdX2UKGgGaAloD0MIQ3Bcxk1gXECUhpRSlGgVTegDaBZHQJhMz557gKp1fZQoaAZoCWgPQwhGYRdFD3phQJSGlFKUaBVN6ANoFkdAmE7LhrFfiXV9lChoBmgJaA9DCFhv1ArTyVhAlIaUUpRoFU3oA2gWR0CYT+gb6xgRdX2UKGgGaAloD0MIoSx8fa1AXECUhpRSlGgVTegDaBZHQJhQGHuZ1FJ1fZQoaAZoCWgPQwiN0xBVeFpgQJSGlFKUaBVN6ANoFkdAmFKLO/tY0XV9lChoBmgJaA9DCGed8X1xH1hAlIaUUpRoFU3oA2gWR0CYVKM3IdU9dX2UKGgGaAloD0MIqMe2DDguU0CUhpRSlGgVTegDaBZHQJhWefvnbIt1fZQoaAZoCWgPQwizXaEPlmVdQJSGlFKUaBVN6ANoFkdAmFb1ZLZi/nV9lChoBmgJaA9DCAQAx549X1JAlIaUUpRoFU3oA2gWR0CYVy2aDwpfdX2UKGgGaAloD0MImgmGcw2NWECUhpRSlGgVTegDaBZHQJhXvWkJrtV1fZQoaAZoCWgPQwiZK4NqgxdWQJSGlFKUaBVN6ANoFkdAmFjoVVPva3V9lChoBmgJaA9DCC7+tidIwFxAlIaUUpRoFU3oA2gWR0CYWSp7TlT4dX2UKGgGaAloD0MIAtTUsrWvcUCUhpRSlGgVTb8CaBZHQJiQbHGS6lN1fZQoaAZoCWgPQwijVwOUhkdvQJSGlFKUaBVN6wJoFkdAmJChScbzb3V9lChoBmgJaA9DCGZOl8XERWpAlIaUUpRoFU1hAmgWR0CYl9vE0iyIdX2UKGgGaAloD0MIsDkHz4Rva0CUhpRSlGgVTWcDaBZHQJimBstTUAl1fZQoaAZoCWgPQwh+ObNdoXNTQJSGlFKUaBVN6ANoFkdAmKcYGt6ol3V9lChoBmgJaA9DCAU25+CZXF1AlIaUUpRoFU3oA2gWR0CYp3YqoZQ6dX2UKGgGaAloD0MIkPeqlQmxWECUhpRSlGgVTegDaBZHQJin9LuhK151fZQoaAZoCWgPQwghdNAlHHhfQJSGlFKUaBVN6ANoFkdAmKrRM8HObHV9lChoBmgJaA9DCG5t4Xmp2ltAlIaUUpRoFU3oA2gWR0CYq8PRzBAOdX2UKGgGaAloD0MI2EXRAx+EXECUhpRSlGgVTegDaBZHQJir8nQY1pF1fZQoaAZoCWgPQwhkXdxGAw9dQJSGlFKUaBVN6ANoFkdAmLA0wWWQfnV9lChoBmgJaA9DCAvQtpr1TWBAlIaUUpRoFU3oA2gWR0CYshcuanaWdX2UKGgGaAloD0MIuvWaHhS4W0CUhpRSlGgVTegDaBZHQJiyjzundft1fZQoaAZoCWgPQwjChqdXytxWQJSGlFKUaBVN6ANoFkdAmLNS2MKkVXV9lChoBmgJaA9DCBqk4CnkimFAlIaUUpRoFU3oA2gWR0CYtH6JIlMRdX2UKGgGaAloD0MIMlUwKqn2ZECUhpRSlGgVTegDaBZHQJi00mb9ZRt1fZQoaAZoCWgPQwhTQUXVr1FtQJSGlFKUaBVNZgFoFkdAmM134sVclnV9lChoBmgJaA9DCBTLLa2GDnBAlIaUUpRoFU1RAWgWR0CYz0mXPZ7HdX2UKGgGaAloD0MIyJV6FoTlYUCUhpRSlGgVTegDaBZHQJjl3GACnxd1fZQoaAZoCWgPQwj2Yign2mJVQJSGlFKUaBVN6ANoFkdAmOYEZNwiq3V9lChoBmgJaA9DCMQlx53ScFFAlIaUUpRoFU3oA2gWR0CY6uB3iaRZdX2UKGgGaAloD0MI8guvJHl/W0CUhpRSlGgVTegDaBZHQJj3YBp5/sp1fZQoaAZoCWgPQwh4gCctXOhcQJSGlFKUaBVN6ANoFkdAmPi5hfBvaXV9lChoBmgJaA9DCM4avK9KImRAlIaUUpRoFU3oA2gWR0CY+USVGCqZdX2UKGgGaAloD0MISKmEJ/RrX0CUhpRSlGgVTegDaBZHQJj9QKTjebd1fZQoaAZoCWgPQwj9Ma1NY2lZQJSGlFKUaBVN6ANoFkdAmP1wh0QsgHV9lChoBmgJaA9DCCUEq+rlJV1AlIaUUpRoFU3oA2gWR0CZAfsOXmeUdX2UKGgGaAloD0MIFjPC24PubUCUhpRSlGgVTbUDaBZHQJkCWr8zhxZ1fZQoaAZoCWgPQwi7Q4oBEhNiQJSGlFKUaBVN6ANoFkdAmQPs5S3sonV9lChoBmgJaA9DCCwOZ3615GJAlIaUUpRoFU3oA2gWR0CZBGtbcGkfdX2UKGgGaAloD0MIRMNi1LU4WkCUhpRSlGgVTegDaBZHQJkGsxEfDDV1fZQoaAZoCWgPQwgBwLFnT1thQJSGlFKUaBVN6ANoFkdAmQciD28IzHV9lChoBmgJaA9DCBe5p6s7yldAlIaUUpRoFU3oA2gWR0CZIQFj/dZadX2UKGgGaAloD0MIjlw3pTypYECUhpRSlGgVTegDaBZHQJkjL91loUV1fZQoaAZoCWgPQwgvNq0UgvhuQJSGlFKUaBVNKAFoFkdAmS1AhbGFSXV9lChoBmgJaA9DCMprJXQXt3FAlIaUUpRoFU1LAWgWR0CZQmcENe+mdX2UKGgGaAloD0MIkL5J06D7XECUhpRSlGgVTegDaBZHQJlDMliSaE11fZQoaAZoCWgPQwhVa2EW2mJjQJSGlFKUaBVN6ANoFkdAmUNcOskpqnV9lChoBmgJaA9DCHaNlgM9b1xAlIaUUpRoFU3oA2gWR0CZSMcrAgxKdX2UKGgGaAloD0MIo8nFGNgpbECUhpRSlGgVTY8DaBZHQJlSZMg2ZRd1fZQoaAZoCWgPQwjcEU4LXklZQJSGlFKUaBVN6ANoFkdAmVc+2mYShHV9lChoBmgJaA9DCA38qIb9s1lAlIaUUpRoFU3oA2gWR0CZWJjqv/zbdX2UKGgGaAloD0MIBTOmYI3Kb0CUhpRSlGgVTXkDaBZHQJla5IWgvlF1fZQoaAZoCWgPQwixUGuad+teQJSGlFKUaBVN6ANoFkdAmV0bJwKjSHV9lChoBmgJaA9DCP7TDRT46WFAlIaUUpRoFU3oA2gWR0CZXVFFlTWHdX2UKGgGaAloD0MIhlRRvMqbW0CUhpRSlGgVTegDaBZHQJljEIjW07d1fZQoaAZoCWgPQwg4Sl6dY2pcQJSGlFKUaBVN6ANoFkdAmWU2QXAM2HV9lChoBmgJaA9DCBKkUuxoillAlIaUUpRoFU3oA2gWR0CZZeoF3Y+TdX2UKGgGaAloD0MI0qbqHtl7WECUhpRSlGgVTegDaBZHQJlpQr8R+Sd1fZQoaAZoCWgPQwhbYfpegxRwQJSGlFKUaBVN/wJoFkdAmW0PCAMDwHV9lChoBmgJaA9DCGQke4Sa9FVAlIaUUpRoFU3oA2gWR0CZh1NTtLL7dX2UKGgGaAloD0MIwVYJFofocUCUhpRSlGgVTYQBaBZHQJmJOrJbMX91fZQoaAZoCWgPQwiFB82uu1twQJSGlFKUaBVN4gJoFkdAmY2RwMpgC3V9lChoBmgJaA9DCHhjQWFQbW9AlIaUUpRoFU27AWgWR0CZmXuDjBEbdX2UKGgGaAloD0MIeuI5W0ChWUCUhpRSlGgVTegDaBZHQJmiTHaN+9d1fZQoaAZoCWgPQwjcnbXbrttiQJSGlFKUaBVN6ANoFkdAmaJzoUzsQnV9lChoBmgJaA9DCGPyBpj56VdAlIaUUpRoFU3oA2gWR0CZp43PiT+vdX2UKGgGaAloD0MIN6eSAaAzaUCUhpRSlGgVTXoDaBZHQJmsXEgntv51fZQoaAZoCWgPQwhxHHi13NJjQJSGlFKUaBVN6ANoFkdAma9t2cJ+lXV9lChoBmgJaA9DCCO/fogN21tAlIaUUpRoFU3oA2gWR0CZtvq/ub7TdX2UKGgGaAloD0MIoS+9/TmIcECUhpRSlGgVTTwBaBZHQJm3sPmPo3d1fZQoaAZoCWgPQwg8MIDwobBYQJSGlFKUaBVN6ANoFkdAmbkPj4pMH3V9lChoBmgJaA9DCDAQBMhQfWBAlIaUUpRoFU3oA2gWR0CZuUKhL5ARdX2UKGgGaAloD0MIaXHGMKfJZECUhpRSlGgVTegDaBZHQJm9nWSU1Q91fZQoaAZoCWgPQwhybagYZ9BhQJSGlFKUaBVN6ANoFkdAmb93W4EwFnV9lChoBmgJaA9DCEnzx7S2BGBAlIaUUpRoFU3oA2gWR0CZwh7+kxh2dX2UKGgGaAloD0MI0/VE14UBckCUhpRSlGgVTWsBaBZHQJnEfMTviLl1fZQoaAZoCWgPQwjQ8dHijIZUQJSGlFKUaBVN6ANoFkdAmcUS/O+qR3V9lChoBmgJaA9DCAFPWris/1VAlIaUUpRoFU3oA2gWR0CZyFcMEzO5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (224 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.38036336804987, "std_reward": 21.101361091128084, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T06:38:37.042264"}
|