Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -537.76 +/- 108.41
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd18838ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd18838aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd18838af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd188391050>", "_build": "<function ActorCriticPolicy._build at 0x7fd1883910e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd188391170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd188391200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd188391290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd188391320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1883913b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd188391440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd1883634b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAACJsIHWHtR3LTE+3ofjZ7J3lWYhtWC5iMko7dICRrzBEfJVVKnD+Jlai1fGD/Vdehz1sVEmGJidCY4UMJ7P4FHw6shlFHLJ7veDtkqiD4hIWPBHb85g30RZ0Wu0GMG0bAt+VQUknprR8+i+HZ06T1pwK7/3YyaTd/2w0wgOYq4uzpN+c4DyL9puIOScYJOqfmIcUANLZX+YNTySNn/OXzG1Zv6R2pDrUaVFTTCo/baBGpWkazE7S87TAFCSM3eR4yLakphqXTETcIJvsAWe88gNk0rWd6R2yOmaJD+YQt20bmKwFVVJM2KblUla5jT+0oj9Thy2G7+CW8+YxzZFkt830Ft+vuqxvW1dk9vquKDt9O2TuKS7Q7A/k9GmIXA1XHzUx+t7jYWiBzY8hyqrQdVcqEoyHLDo/Umdw0wq63+Pl758HqBY7bfWrgBR/7b7dM4k2/k50ZGPNvIGWjULnUQrnQBHsi5m3VAU/eVXampi5Gt+X/nOZl4ZQLnZhKYddRXkIdSGCsPWv84Sv8mxuO5IeMOFfc2qUS48Nbyo35C9+3gm2/xpddzw+tjS3XAB7LkH9qavsLD1B7XZ0VCGkLUsLJdxE8jOZo0JUwtjLo25UWdD7rTYuyJ6aWg7o5vRD5LAgKZ23iZTdLtZVrabvW7oPy6KZMvJDihc8OSD+Cshhlw1DEsDAQU/yoyqstIx7y1CJWIeSoeUxGdaYtazvfyvJG9RHulKCiljaw2Lro5qiVi2N1H0iOTYxuSIfZebCfeacw//ppd98vl2TxOmmdkMOeR0mLcJ9f/NOebjddfVlyyWtzZvaNwIH1EIv0b1LdO+NW0ismWPXlZv0E+nN7Kz8BJSt77NuHyaEEYk89rIxAwHQOyRzJEZ6ELcqe6RkbQpmsTYtUtEuY2cS0oul9OpkWLfOw0Q78lemQQ2vSIyaTa/MfT27OzsKfbpTUCfWHVH+4VpsP9JzZga9H92cP+R1BzZg4YHhjiKbzlTUbZHOIfjl2RPRWPPTemDa/DZR8drF/BATHRZVazaPB6rZPAJ55QhIOB5EO1rgWBMRPhdNtGDqrt33r73s4rzf7yvpQ8l6eW0+LJG/kyIDhc0S8fQwJeBMyjGWw+VBbhB9bjaseQ5x6hctFDJnzwnTwZMpr9rDwVrOS00ffIUzkcWPmGv2Ch24zLuZP0c70WItuzr9cR0QU/Mqj/9tAnz201hh08MsMTYMYrZ2Wf/oEyZXFUVg75/i60Q9dOHzBwJwdPDu7nPeH4s9va1p2VwVSHomamTxWiRT8nrKO8HkdBd3qewKC9nQs7NooftrBhr6famh9pLKlrRAlhiLXkHe9sOUs8ASO4iz96pZIN2hCEeNHpaKNpzlJWg6E4HNDMW/wMiExxyhZgkndkzSG1MBYxmXRe9Tmr7nwdxTnvq8mOJUp/Dp2CX7noDS7pTofNQmeEuO0SwrtYAJjod3tfeWfwXdwAxwVOdVTQpEnkK5RQ56jTUb1FWpLak+Zq1MhSfa0YsmS/oq12si24qcdxh3lVaDS8m1kBHBoBC55/B4imd2Tu7y/vHhGVHK3XwIgasuM/YLLfEFspPRuksLm75rqCYvFYHcMFcxW7EWgk9YWrOSr0HR0SAftGO4D1dESyumnpjDC/RLBQRG+s1hDYJouPC6xBs8nOOnFmvwU7ra2EnN3tRHvOhmGmuOVzPxsSpV2seDdp/ij9SsO/6IwKxuoBDfx3pDoRK8htk0uf4AEy8oV6T8GI6qbezL8sMmdo1B7PYNe8QmjdFsT+P1ur9+BI+0TN2Lnv4RwVY5nHLOGrdcLn75VgfZqsR042db9TYzZNn+Xpv2V3AKvm2qyHWwNhjFkYm6jqJEq5ezej8yGQOrxhplDYHLvFGyimMz8VUu1y+ho7QTpTsusShXoHy1IsBOVuiFgSUc8wpmU6JWqbCEzd2p7Qy7q4LBj4+soSGhU3YtEvQyW6w3QnNFtZYkj4/wT4Qw3z8xvakCm9c4Z6l95Ute0TmLkJp6GEuwaA1ymQ+j2b9vcDB1BvLGgmz9ChlwvaD4J48KwYcJJ/9hqAZ0TnPG4Jyjmv2F9PbB4ZsLjKiH0XI3GXcnR2/Xix5Ynw+QTsOcC9mdBo3/NB1b/iybJRIooEZaAuXdO2lH5sym0gyuO3gqsckoNO+/eKqxt5cwFE8yjveNDI325HxxiK7nB9uRDXCpz+e8WIVmpQ4Ia2v1NRIb6EYwVILFVyLJ7cr7touEK2f58LR4mu/Pns0YG7xv/IHe3KXtlVjanicDolbag1lQLj2t2+pIoVlIaCcdCi9HbjArIypMask/vUbg0M8O7reYL7i8iUj4eNmQB43/blPX0pyhwp8jeu14y5ienxR3jTh6CCRUb9lZ49ylaONVmrtSilcIgmFFJ/ZBWzxTugGdqRUGxn9au76HRe4nPr6THRVC0+6s/wObmgDCrCfiBuS/jyRyowjDpApC8Vv/tIqng08DjA1QCpp9Qo4+/IMLux3+zOjRRWDfzB2iEzcqZOBHzOvNCqAB/z/VN2RRX6K3Fem1ZdwHeTuTOmJkejsosmv3nefRMx1zBtZemJbsqRm3m778GDYbCbYXYMKQrd666xjMLcdOL5wAMsodJTjGUC6Zs2DcKNaHzhIbUc6+xC9lVV4LRWK/RKVbMvD12U07d0sA0jwXv2/xBRcC0IA/ph5F+3+DjDjXUghdwxLauSUKYDLYL+SA5gAc49s56k4HN0w/keeNDBVhVTq/LecVkVNKoR/BC2Omu+wEDDlIZaymKco1Ajp8+7L39Tfd/3/32W+CTmwkt8NZBx4NrFtUkKDClt6zinF0CoDgH9xC1kQ1gz8W9T8RBZlbYyzDCVgmGpr6wRFJs9zqWROFVAzhQ2PTiAVpREXIHVH2BLoEePjjiPThvuBDOrxbXgUV4r5bn+dNMo/1W21fr9Oq2oZnYhnMxOdgE6OvnFdZJO/MwaxtZPWUw2rXgbB3TFpu8npE/sfsWcfE3CHCjw8RQIaTKpVm5FAnpSYEJgfAJR2cqQnGs8qz3u9dw+8IfWmzQsL7CojIlL6hRQpT55DTFICBbv1/8KZzeRtAI3/OaAZcxStZsxwbAu+AmIBBcbGbwiX5tA8AOPM0VgX2R+DiC7rXdyNzfl5PnF44ePECs6RSQpPpkODtI4Yh2ekiHO85cL9VKYuZzxb5SEtpXx/cs5Q+YMacLXD6QIW+vf9OA4IGzeNnkxPKeqsuloRGqgzoX0qQg8oZjOrtvSBS6CH/K7115UAf7cNKHFVyiz+dQeat9w+e9DVc31xVP4g1GIObif4O1CQx0gkYeVHOJUYZ5SUdJRijANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAADfTy0VjHiGxI4BVLHKu8oDhauRvjRx2AaTrR80U8T33QWqEXEEyt2cXIVeCwJ2n3FVTRJBWkMl/AnmaX/KkobHhGpWW0FRiiuwjdgMIXiXFtyDuDUBOrU6PYw0kq5L4GFgoT8tXyp52YYYBoF8tX5HdnI8JiDXuMH3uJOiPG+GgEhtT/6HSgVyEyMquItn8tvV9bsvfrOCn0pUA2q0+i6geQnYxcEKUP/kadsrxXgR3tQ4clnC8lBiR7b2tlQ95YJOTDehuRcMq2AnnmbtZTNGa1ObBaL02V/XuEwPuTusDP+ouRUCwSjEohtgydxU3wR+ozrHmhHhK8QJRVWuFI64mHXwH52N5nkpmp0gTw4NOqlC38G9vY+xlW22Idrro5JYoY0N5uTAkBqN8097lIGXevMoCcfcyuQ3CkeDGddtCDepQV0v21qa6BiFwp5ip4Pg3NQLMXeEKo6CRvyE4uowGMCjU57Y8xHKtGsEbHqMmi9FNtpb4BVMzPca1/EPE0VsEnztxIlD19F94lg5Bog+J0k0GGmaSvD15ieLmKrw5UE5Fb+B4D4vU3UFMd+VCZlo99NQ1al1GNcjtzSLCklQhUUHIpqMzagsf6kfwSxiGCB69YY4c1GAojuIqVa5Dw51ekTxOhn6YN8Tp9NMRVGaGUnGZhfavA/5ec416S61wSe//7EcHICD/4cj/GBO+dQkqXhFHEDKVoUpbbAXGK3N6q5R+8i35DTi6jPk5iHNrw7eqqTbHYVyGR/dC4r59zZHH8zz9NhcFusslW4fd5EuEMK85yQ+oIyyKIT8etIgTDYtE53zaQaxADntWTB8JC23Mm7zdv9gtm7E4YTDk5RW9xORD9Olf9h3xnOJuESWE1fts1grqgAHkvhCrzX5xzkRr//T/SgNk4qna6NzGBUOc4E8OtsB+WLvzJMiI6Vq3lZtiGDYvxqv6Yc82N2rtXzKxd0Y6XWl1tPKzrOlMDnaLAugMtbzJ55PKQpCs4WDEm6uqOj3xYuRFI3z+GpaHQKUm3/1nkwKgmi90D7kwRmAENGt4nbsR8Mh+j4oa01MYxMKNwXbn15ruojEIAO2S0zsVz1mP3xhVqhZj0srV/1ML4esjhcGXsm4yluEzMrJUKIeVnQrihFsn0wJ8XsCsm+HpjHHJv/sQI0l+HcauYSYls6DWMl6rvW7rkccsHSLVVzaa0MApylXGRQlDh5IwiVt/24hpJTnx7xsyoylZ2nPSpujSvZKTCIF1LZr5pRpSH/2RA9NzIaWPEi02j9vFbM2+LSkcc8vHZsR3NOli7cXIEYZQ1vXBU5q8EZL/bT4kLh6xIKS38mrGb3N0/KTICABMP6VQgCgfBRtY0vWGEWsJ4EyKTHFeOF7rwPfp1ZKjfcvJCsUnRQHx8qCjq7kVw3VESvjwquAd+fueqAJl891UU/0G3Y4MUkd5xGg+3kuJX3Hgp/+2d+8uqWX7BMvJVDXw0kNgI4yMZG/b1qrPa22ZjDG0yKQHekMrD/t2vjLYvD/DW/C7fmydOx19D6/tKsWO/MDrXxMHpM+hiMnz0QbDGD2QJXUw0CscWA4gt4Xh1dPdPCC7Q8eFfb+fOerVlO4N6DMszai+8HNQ1Acy82/8xmZxDPETVqBQeuy7PunZlpng3oENSeTFpz48px1S+CPaAnz/Ezt+0UBDeju3KCkLQ72z+/orUjDEcdwEIBYjDficY/S3pbYTlErxt42JlFoo0Cbqf2lzpV35qythjCmzMfTpTSRwUA+duiyNVWTFqAEVxErbszh5NxjsDuvbf60iB+f+sH/CBBbcpv+SslF59/SWKh2mMsObe5KGGJh6jdZWEhuFpBwJTxEhS8pilluYP6iClj6jZFTsFXPYKlEV6f8ZqYlztAvR/EPRh6EmVWoLSmQvI5tRxrFkwCiDAgHrhBsYebMgtXx2FSVL/1dAFAK9UIDwSIS41lXEOqfwWidI83wi6GgcHNlOuyX/4HLMAaEQ2003jz67hBgUrZHfbqn/JBhl7QDxO5UXJg8xsIXoQIWQ9lm6m7GIybkQc0TqoS2oJ76F2dB4rNWjkRyY5j6uU9t+BeA5+pBxn/oOVstwraCSDerfEUHI+rP2mVSwIDyNbrWN0ne9AEVMxonI/y9tL9m1hsv3wesqlzPa6z44YlfGUu9a/gQVxkGbY72ZGbcOpcT183chjOSdtIkUdnj4QHG/3bKgYHYHOVjU2TklGF+P/UKYnagEa2DZNiCB997PS/eAFTx9bC38svXFXgQALpBbOPj78Z/ECDyyNf0aBzHfKyRLPWgGNO+V6FcExd9Jh48RlmbCBsN1t9JRTy1t3vqjJSJj8GZFdVm0stEK5QyGvtEPOz4q15XOg01oEtDCXZ5f6QLKRpgrARDk/VwkPFeOLR/ffZY8ZjRcYZ06YDwzWNw/S/6EXmRsl1p/BSA2bOdr/han9SAD94uqwkWLAlgnj2BgyI2Dg/Ztjw039cEGan3HeCaBtJ1pyIKhCZwwbmmcTgjj84fcH3YjTUOPhOhNv1G5Yxu2wUeQuU65+1ZZAlU3sHYONUZAZtQ95UKhEQcU2j+JMTtpfez1CiuBsNoidZNzK9MZhIaElKtyooYwrJFrdk7q6yiY3ASBdt18mEiCgBg42OoIvhg7icVA71/nDMtGFxbMwluvIPBDQZhn+LyQdLiANgOerU4NKwPp7u0SJ4dipK1ED7WNv+/MXY2AvCUwS9AsDyGTPl6LBQIMaDOS1zab6RkCybh8wDNHaWBSUddw48ZxQUu28Db3qO2fX8kL1SZq1VkyEYTja+wV4ba5Yma/1DZzwNuKB9vIF97amgGEM6nCdeU9y06XykgjzTbmeiKQ9hzefuuMpxShcEMVwXFRHMAlVnfA8TyHDz0uRwQncWy5HjPXPs3nfQoPOSyI72DsWBJHUwBMDYW/bhqOq84iDabTW8hVdsKzYfTrwpTagjk7LBhyI/HKYWZiMZDchpA6zqojXLss4od0CrQIeDkFWjnCTYsYS5hxOcC+I5q8lqNE3YigcWYBwWUTuvBIDMzkW1ZRDUMmrssFRA40Q5XnCr7RKdKssmFIv1SBQeUkqj6LCBAO03d3w3bolAKjMg2EwAx1Loc4gljVvTgMARpkJyycJGC7t8mbqfXSVFEE/zZngtVeXvmNcWJ0mkNxPdH9pQ+j2lP+6rNhSkIXQRK10gydw5PWZXSQIXMOiF1vbiBpTVmaA+JXxzeperOoGJbWtxg+lprtD4ahsP2Nd5WRXKDWUUMSd9eJbP5mJx9Gju0Cmx1gkQHPoKCejPm6yi4m3bwmPaqj3BsYqZPELqpLEOnNx5R0lGKMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 5120, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655474054.2201161, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgxi0Hvkazrz+Txge/OmOjvuRMmz4LEd69AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV8AMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi4wOSMJQSECUhpRSlIwBbJRL24wBdJRHQG7lSsKb8WN1fZQoaAZoCWgPQwhmLnB5rKk5QJSGlFKUaBVLx2gWR0Bu7qDRMN+cdX2UKGgGaAloD0MIbhYvFoZiScCUhpRSlGgVS5RoFkdAbvUplz2ex3V9lChoBmgJaA9DCNJSeTvC6Q9AlIaUUpRoFUu5aBZHQG79YB/7SAp1fZQoaAZoCWgPQwiCO1CnPHr3v5SGlFKUaBVLmGgWR0BvA+gYgq3FdX2UKGgGaAloD0MIT85Q3PGm6b+UhpRSlGgVS9VoFkdAbxd0cOskp3V9lChoBmgJaA9DCL+7lSU6vz5AlIaUUpRoFUuYaBZHQG8eUMXrMTx1fZQoaAZoCWgPQwg1RBX+DBxdwJSGlFKUaBVLwGgWR0BvJtYyO7xvdX2UKGgGaAloD0MI8ZwtILRqTECUhpRSlGgVS7poFkdAby9zySV4YHV9lChoBmgJaA9DCAK8BRIU3yBAlIaUUpRoFU0MAWgWR0BvO/h4t6HCdX2UKGgGaAloD0MIRBX+DG8GOsCUhpRSlGgVS65oFkdAb00fJ3gUDnV9lChoBmgJaA9DCMST3czoFx5AlIaUUpRoFUvqaBZHQG9X2TX8O091fZQoaAZoCWgPQwj7zcR0IZ4wwJSGlFKUaBVLuGgWR0BvYBRwZOzqdX2UKGgGaAloD0MIOnR63o1lUcCUhpRSlGgVS69oFkdAb2e4uscQy3V9lChoBmgJaA9DCIQSZtr+MUvAlIaUUpRoFUvPaBZHQG9xFdC3PRl1fZQoaAZoCWgPQwhRSghW1U1RQJSGlFKUaBVN6ANoFkdAb8ctq59Vm3V9lChoBmgJaA9DCLe28LxURDZAlIaUUpRoFUuvaBZHQG/PC5VfeDZ1fZQoaAZoCWgPQwisG++OjOUTwJSGlFKUaBVLf2gWR0Bv3gGY8dPtdX2UKGgGaAloD0MIsr6ByY2RYMCUhpRSlGgVTQwBaBZHQG/qbWuoxYd1fZQoaAZoCWgPQwghsd09QPFCQJSGlFKUaBVL3GgWR0Bv9Fucc2itdX2UKGgGaAloD0MIhzQqcLJROsCUhpRSlGgVS7xoFkdAb/wrmQr+YXV9lChoBmgJaA9DCMGtu3mqUUvAlIaUUpRoFUuhaBZHQHABevUz9CN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 220, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c65f178d0850b5486234bf7a3c96bad6a00061ca786e5b329e0fc4123908b447
|
3 |
+
size 146514
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd18838ae60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd18838aef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd18838af80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd188391050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd1883910e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd188391170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd188391200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd188391290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd188391320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd1883913b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd188391440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd1883634b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVUgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDqMBXN0YXRllH2UKIwDa2V5lGgSaBRLAIWUaBaHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAACJsIHWHtR3LTE+3ofjZ7J3lWYhtWC5iMko7dICRrzBEfJVVKnD+Jlai1fGD/Vdehz1sVEmGJidCY4UMJ7P4FHw6shlFHLJ7veDtkqiD4hIWPBHb85g30RZ0Wu0GMG0bAt+VQUknprR8+i+HZ06T1pwK7/3YyaTd/2w0wgOYq4uzpN+c4DyL9puIOScYJOqfmIcUANLZX+YNTySNn/OXzG1Zv6R2pDrUaVFTTCo/baBGpWkazE7S87TAFCSM3eR4yLakphqXTETcIJvsAWe88gNk0rWd6R2yOmaJD+YQt20bmKwFVVJM2KblUla5jT+0oj9Thy2G7+CW8+YxzZFkt830Ft+vuqxvW1dk9vquKDt9O2TuKS7Q7A/k9GmIXA1XHzUx+t7jYWiBzY8hyqrQdVcqEoyHLDo/Umdw0wq63+Pl758HqBY7bfWrgBR/7b7dM4k2/k50ZGPNvIGWjULnUQrnQBHsi5m3VAU/eVXampi5Gt+X/nOZl4ZQLnZhKYddRXkIdSGCsPWv84Sv8mxuO5IeMOFfc2qUS48Nbyo35C9+3gm2/xpddzw+tjS3XAB7LkH9qavsLD1B7XZ0VCGkLUsLJdxE8jOZo0JUwtjLo25UWdD7rTYuyJ6aWg7o5vRD5LAgKZ23iZTdLtZVrabvW7oPy6KZMvJDihc8OSD+Cshhlw1DEsDAQU/yoyqstIx7y1CJWIeSoeUxGdaYtazvfyvJG9RHulKCiljaw2Lro5qiVi2N1H0iOTYxuSIfZebCfeacw//ppd98vl2TxOmmdkMOeR0mLcJ9f/NOebjddfVlyyWtzZvaNwIH1EIv0b1LdO+NW0ismWPXlZv0E+nN7Kz8BJSt77NuHyaEEYk89rIxAwHQOyRzJEZ6ELcqe6RkbQpmsTYtUtEuY2cS0oul9OpkWLfOw0Q78lemQQ2vSIyaTa/MfT27OzsKfbpTUCfWHVH+4VpsP9JzZga9H92cP+R1BzZg4YHhjiKbzlTUbZHOIfjl2RPRWPPTemDa/DZR8drF/BATHRZVazaPB6rZPAJ55QhIOB5EO1rgWBMRPhdNtGDqrt33r73s4rzf7yvpQ8l6eW0+LJG/kyIDhc0S8fQwJeBMyjGWw+VBbhB9bjaseQ5x6hctFDJnzwnTwZMpr9rDwVrOS00ffIUzkcWPmGv2Ch24zLuZP0c70WItuzr9cR0QU/Mqj/9tAnz201hh08MsMTYMYrZ2Wf/oEyZXFUVg75/i60Q9dOHzBwJwdPDu7nPeH4s9va1p2VwVSHomamTxWiRT8nrKO8HkdBd3qewKC9nQs7NooftrBhr6famh9pLKlrRAlhiLXkHe9sOUs8ASO4iz96pZIN2hCEeNHpaKNpzlJWg6E4HNDMW/wMiExxyhZgkndkzSG1MBYxmXRe9Tmr7nwdxTnvq8mOJUp/Dp2CX7noDS7pTofNQmeEuO0SwrtYAJjod3tfeWfwXdwAxwVOdVTQpEnkK5RQ56jTUb1FWpLak+Zq1MhSfa0YsmS/oq12si24qcdxh3lVaDS8m1kBHBoBC55/B4imd2Tu7y/vHhGVHK3XwIgasuM/YLLfEFspPRuksLm75rqCYvFYHcMFcxW7EWgk9YWrOSr0HR0SAftGO4D1dESyumnpjDC/RLBQRG+s1hDYJouPC6xBs8nOOnFmvwU7ra2EnN3tRHvOhmGmuOVzPxsSpV2seDdp/ij9SsO/6IwKxuoBDfx3pDoRK8htk0uf4AEy8oV6T8GI6qbezL8sMmdo1B7PYNe8QmjdFsT+P1ur9+BI+0TN2Lnv4RwVY5nHLOGrdcLn75VgfZqsR042db9TYzZNn+Xpv2V3AKvm2qyHWwNhjFkYm6jqJEq5ezej8yGQOrxhplDYHLvFGyimMz8VUu1y+ho7QTpTsusShXoHy1IsBOVuiFgSUc8wpmU6JWqbCEzd2p7Qy7q4LBj4+soSGhU3YtEvQyW6w3QnNFtZYkj4/wT4Qw3z8xvakCm9c4Z6l95Ute0TmLkJp6GEuwaA1ymQ+j2b9vcDB1BvLGgmz9ChlwvaD4J48KwYcJJ/9hqAZ0TnPG4Jyjmv2F9PbB4ZsLjKiH0XI3GXcnR2/Xix5Ynw+QTsOcC9mdBo3/NB1b/iybJRIooEZaAuXdO2lH5sym0gyuO3gqsckoNO+/eKqxt5cwFE8yjveNDI325HxxiK7nB9uRDXCpz+e8WIVmpQ4Ia2v1NRIb6EYwVILFVyLJ7cr7touEK2f58LR4mu/Pns0YG7xv/IHe3KXtlVjanicDolbag1lQLj2t2+pIoVlIaCcdCi9HbjArIypMask/vUbg0M8O7reYL7i8iUj4eNmQB43/blPX0pyhwp8jeu14y5ienxR3jTh6CCRUb9lZ49ylaONVmrtSilcIgmFFJ/ZBWzxTugGdqRUGxn9au76HRe4nPr6THRVC0+6s/wObmgDCrCfiBuS/jyRyowjDpApC8Vv/tIqng08DjA1QCpp9Qo4+/IMLux3+zOjRRWDfzB2iEzcqZOBHzOvNCqAB/z/VN2RRX6K3Fem1ZdwHeTuTOmJkejsosmv3nefRMx1zBtZemJbsqRm3m778GDYbCbYXYMKQrd666xjMLcdOL5wAMsodJTjGUC6Zs2DcKNaHzhIbUc6+xC9lVV4LRWK/RKVbMvD12U07d0sA0jwXv2/xBRcC0IA/ph5F+3+DjDjXUghdwxLauSUKYDLYL+SA5gAc49s56k4HN0w/keeNDBVhVTq/LecVkVNKoR/BC2Omu+wEDDlIZaymKco1Ajp8+7L39Tfd/3/32W+CTmwkt8NZBx4NrFtUkKDClt6zinF0CoDgH9xC1kQ1gz8W9T8RBZlbYyzDCVgmGpr6wRFJs9zqWROFVAzhQ2PTiAVpREXIHVH2BLoEePjjiPThvuBDOrxbXgUV4r5bn+dNMo/1W21fr9Oq2oZnYhnMxOdgE6OvnFdZJO/MwaxtZPWUw2rXgbB3TFpu8npE/sfsWcfE3CHCjw8RQIaTKpVm5FAnpSYEJgfAJR2cqQnGs8qz3u9dw+8IfWmzQsL7CojIlL6hRQpT55DTFICBbv1/8KZzeRtAI3/OaAZcxStZsxwbAu+AmIBBcbGbwiX5tA8AOPM0VgX2R+DiC7rXdyNzfl5PnF44ePECs6RSQpPpkODtI4Yh2ekiHO85cL9VKYuZzxb5SEtpXx/cs5Q+YMacLXD6QIW+vf9OA4IGzeNnkxPKeqsuloRGqgzoX0qQg8oZjOrtvSBS6CH/K7115UAf7cNKHFVyiz+dQeat9w+e9DVc31xVP4g1GIObif4O1CQx0gkYeVHOJUYZ5SUdJRijANwb3OUSxB1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": "RandomState(MT19937)"
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVRgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAADfTy0VjHiGxI4BVLHKu8oDhauRvjRx2AaTrR80U8T33QWqEXEEyt2cXIVeCwJ2n3FVTRJBWkMl/AnmaX/KkobHhGpWW0FRiiuwjdgMIXiXFtyDuDUBOrU6PYw0kq5L4GFgoT8tXyp52YYYBoF8tX5HdnI8JiDXuMH3uJOiPG+GgEhtT/6HSgVyEyMquItn8tvV9bsvfrOCn0pUA2q0+i6geQnYxcEKUP/kadsrxXgR3tQ4clnC8lBiR7b2tlQ95YJOTDehuRcMq2AnnmbtZTNGa1ObBaL02V/XuEwPuTusDP+ouRUCwSjEohtgydxU3wR+ozrHmhHhK8QJRVWuFI64mHXwH52N5nkpmp0gTw4NOqlC38G9vY+xlW22Idrro5JYoY0N5uTAkBqN8097lIGXevMoCcfcyuQ3CkeDGddtCDepQV0v21qa6BiFwp5ip4Pg3NQLMXeEKo6CRvyE4uowGMCjU57Y8xHKtGsEbHqMmi9FNtpb4BVMzPca1/EPE0VsEnztxIlD19F94lg5Bog+J0k0GGmaSvD15ieLmKrw5UE5Fb+B4D4vU3UFMd+VCZlo99NQ1al1GNcjtzSLCklQhUUHIpqMzagsf6kfwSxiGCB69YY4c1GAojuIqVa5Dw51ekTxOhn6YN8Tp9NMRVGaGUnGZhfavA/5ec416S61wSe//7EcHICD/4cj/GBO+dQkqXhFHEDKVoUpbbAXGK3N6q5R+8i35DTi6jPk5iHNrw7eqqTbHYVyGR/dC4r59zZHH8zz9NhcFusslW4fd5EuEMK85yQ+oIyyKIT8etIgTDYtE53zaQaxADntWTB8JC23Mm7zdv9gtm7E4YTDk5RW9xORD9Olf9h3xnOJuESWE1fts1grqgAHkvhCrzX5xzkRr//T/SgNk4qna6NzGBUOc4E8OtsB+WLvzJMiI6Vq3lZtiGDYvxqv6Yc82N2rtXzKxd0Y6XWl1tPKzrOlMDnaLAugMtbzJ55PKQpCs4WDEm6uqOj3xYuRFI3z+GpaHQKUm3/1nkwKgmi90D7kwRmAENGt4nbsR8Mh+j4oa01MYxMKNwXbn15ruojEIAO2S0zsVz1mP3xhVqhZj0srV/1ML4esjhcGXsm4yluEzMrJUKIeVnQrihFsn0wJ8XsCsm+HpjHHJv/sQI0l+HcauYSYls6DWMl6rvW7rkccsHSLVVzaa0MApylXGRQlDh5IwiVt/24hpJTnx7xsyoylZ2nPSpujSvZKTCIF1LZr5pRpSH/2RA9NzIaWPEi02j9vFbM2+LSkcc8vHZsR3NOli7cXIEYZQ1vXBU5q8EZL/bT4kLh6xIKS38mrGb3N0/KTICABMP6VQgCgfBRtY0vWGEWsJ4EyKTHFeOF7rwPfp1ZKjfcvJCsUnRQHx8qCjq7kVw3VESvjwquAd+fueqAJl891UU/0G3Y4MUkd5xGg+3kuJX3Hgp/+2d+8uqWX7BMvJVDXw0kNgI4yMZG/b1qrPa22ZjDG0yKQHekMrD/t2vjLYvD/DW/C7fmydOx19D6/tKsWO/MDrXxMHpM+hiMnz0QbDGD2QJXUw0CscWA4gt4Xh1dPdPCC7Q8eFfb+fOerVlO4N6DMszai+8HNQ1Acy82/8xmZxDPETVqBQeuy7PunZlpng3oENSeTFpz48px1S+CPaAnz/Ezt+0UBDeju3KCkLQ72z+/orUjDEcdwEIBYjDficY/S3pbYTlErxt42JlFoo0Cbqf2lzpV35qythjCmzMfTpTSRwUA+duiyNVWTFqAEVxErbszh5NxjsDuvbf60iB+f+sH/CBBbcpv+SslF59/SWKh2mMsObe5KGGJh6jdZWEhuFpBwJTxEhS8pilluYP6iClj6jZFTsFXPYKlEV6f8ZqYlztAvR/EPRh6EmVWoLSmQvI5tRxrFkwCiDAgHrhBsYebMgtXx2FSVL/1dAFAK9UIDwSIS41lXEOqfwWidI83wi6GgcHNlOuyX/4HLMAaEQ2003jz67hBgUrZHfbqn/JBhl7QDxO5UXJg8xsIXoQIWQ9lm6m7GIybkQc0TqoS2oJ76F2dB4rNWjkRyY5j6uU9t+BeA5+pBxn/oOVstwraCSDerfEUHI+rP2mVSwIDyNbrWN0ne9AEVMxonI/y9tL9m1hsv3wesqlzPa6z44YlfGUu9a/gQVxkGbY72ZGbcOpcT183chjOSdtIkUdnj4QHG/3bKgYHYHOVjU2TklGF+P/UKYnagEa2DZNiCB997PS/eAFTx9bC38svXFXgQALpBbOPj78Z/ECDyyNf0aBzHfKyRLPWgGNO+V6FcExd9Jh48RlmbCBsN1t9JRTy1t3vqjJSJj8GZFdVm0stEK5QyGvtEPOz4q15XOg01oEtDCXZ5f6QLKRpgrARDk/VwkPFeOLR/ffZY8ZjRcYZ06YDwzWNw/S/6EXmRsl1p/BSA2bOdr/han9SAD94uqwkWLAlgnj2BgyI2Dg/Ztjw039cEGan3HeCaBtJ1pyIKhCZwwbmmcTgjj84fcH3YjTUOPhOhNv1G5Yxu2wUeQuU65+1ZZAlU3sHYONUZAZtQ95UKhEQcU2j+JMTtpfez1CiuBsNoidZNzK9MZhIaElKtyooYwrJFrdk7q6yiY3ASBdt18mEiCgBg42OoIvhg7icVA71/nDMtGFxbMwluvIPBDQZhn+LyQdLiANgOerU4NKwPp7u0SJ4dipK1ED7WNv+/MXY2AvCUwS9AsDyGTPl6LBQIMaDOS1zab6RkCybh8wDNHaWBSUddw48ZxQUu28Db3qO2fX8kL1SZq1VkyEYTja+wV4ba5Yma/1DZzwNuKB9vIF97amgGEM6nCdeU9y06XykgjzTbmeiKQ9hzefuuMpxShcEMVwXFRHMAlVnfA8TyHDz0uRwQncWy5HjPXPs3nfQoPOSyI72DsWBJHUwBMDYW/bhqOq84iDabTW8hVdsKzYfTrwpTagjk7LBhyI/HKYWZiMZDchpA6zqojXLss4od0CrQIeDkFWjnCTYsYS5hxOcC+I5q8lqNE3YigcWYBwWUTuvBIDMzkW1ZRDUMmrssFRA40Q5XnCr7RKdKssmFIv1SBQeUkqj6LCBAO03d3w3bolAKjMg2EwAx1Loc4gljVvTgMARpkJyycJGC7t8mbqfXSVFEE/zZngtVeXvmNcWJ0mkNxPdH9pQ+j2lP+6rNhSkIXQRK10gydw5PWZXSQIXMOiF1vbiBpTVmaA+JXxzeperOoGJbWtxg+lprtD4ahsP2Nd5WRXKDWUUMSd9eJbP5mJx9Gju0Cmx1gkQHPoKCejPm6yi4m3bwmPaqj3BsYqZPELqpLEOnNx5R0lGKMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": "RandomState(MT19937)"
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 5120,
|
46 |
+
"_total_timesteps": 5000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655474054.2201161,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgxi0Hvkazrz+Txge/OmOjvuRMmz4LEd69AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02400000000000002,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASV8AMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi4wOSMJQSECUhpRSlIwBbJRL24wBdJRHQG7lSsKb8WN1fZQoaAZoCWgPQwhmLnB5rKk5QJSGlFKUaBVLx2gWR0Bu7qDRMN+cdX2UKGgGaAloD0MIbhYvFoZiScCUhpRSlGgVS5RoFkdAbvUplz2ex3V9lChoBmgJaA9DCNJSeTvC6Q9AlIaUUpRoFUu5aBZHQG79YB/7SAp1fZQoaAZoCWgPQwiCO1CnPHr3v5SGlFKUaBVLmGgWR0BvA+gYgq3FdX2UKGgGaAloD0MIT85Q3PGm6b+UhpRSlGgVS9VoFkdAbxd0cOskp3V9lChoBmgJaA9DCL+7lSU6vz5AlIaUUpRoFUuYaBZHQG8eUMXrMTx1fZQoaAZoCWgPQwg1RBX+DBxdwJSGlFKUaBVLwGgWR0BvJtYyO7xvdX2UKGgGaAloD0MI8ZwtILRqTECUhpRSlGgVS7poFkdAby9zySV4YHV9lChoBmgJaA9DCAK8BRIU3yBAlIaUUpRoFU0MAWgWR0BvO/h4t6HCdX2UKGgGaAloD0MIRBX+DG8GOsCUhpRSlGgVS65oFkdAb00fJ3gUDnV9lChoBmgJaA9DCMST3czoFx5AlIaUUpRoFUvqaBZHQG9X2TX8O091fZQoaAZoCWgPQwj7zcR0IZ4wwJSGlFKUaBVLuGgWR0BvYBRwZOzqdX2UKGgGaAloD0MIOnR63o1lUcCUhpRSlGgVS69oFkdAb2e4uscQy3V9lChoBmgJaA9DCIQSZtr+MUvAlIaUUpRoFUvPaBZHQG9xFdC3PRl1fZQoaAZoCWgPQwhRSghW1U1RQJSGlFKUaBVN6ANoFkdAb8ctq59Vm3V9lChoBmgJaA9DCLe28LxURDZAlIaUUpRoFUuvaBZHQG/PC5VfeDZ1fZQoaAZoCWgPQwisG++OjOUTwJSGlFKUaBVLf2gWR0Bv3gGY8dPtdX2UKGgGaAloD0MIsr6ByY2RYMCUhpRSlGgVTQwBaBZHQG/qbWuoxYd1fZQoaAZoCWgPQwghsd09QPFCQJSGlFKUaBVL3GgWR0Bv9Fucc2itdX2UKGgGaAloD0MIhzQqcLJROsCUhpRSlGgVS7xoFkdAb/wrmQr+YXV9lChoBmgJaA9DCMGtu3mqUUvAlIaUUpRoFUuhaBZHQHABevUz9CN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 220,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d16b9fb24118d95829e0aaafba88f5867c5c0a1490dc9b6f7af203173e87c64
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47fe3ae81b5b4dfb0c931ee24161af40951a8fa4c8064932fb882e20f7fb55f5
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4950e170ce578b9e9c16d59c6d3eaa8da1d6637e21ff77492854cef9d2ba0be9
|
3 |
+
size 75341
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -537.7599427904818, "std_reward": 108.40905184907803, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-17T13:57:26.407930"}
|