File size: 16,643 Bytes
5a76c1a 0b4ff36 5a76c1a 0b4ff36 5a76c1a 0b4ff36 5a76c1a 0b4ff36 5a76c1a 0b4ff36 5a76c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import argparse
import json
import os
import random
from copy import deepcopy
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from timm.models.layers import DropPath, trunc_normal_
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import functional
# ========= Model =========
# copy from https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
class LayerNorm(nn.Module):
"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, self.weight, self.bias, self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x
class Block(nn.Module):
"""ConvNeXtV2 Block.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(self, dim, drop_path=0.0):
super().__init__()
self.dwconv = nn.Conv2d(
dim, dim, kernel_size=7, padding=3, groups=dim
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(
dim, 4 * dim
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(4 * dim)
self.pwconv2 = nn.Linear(4 * dim, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtV2(nn.Module):
"""ConvNeXt V2
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int[]): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(
self,
in_chans=3,
num_classes=1000,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
head_init_scale=1.0,
):
super().__init__()
self.depths = depths
self.downsample_layers = (
nn.ModuleList()
) # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = (
nn.ModuleList()
) # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[
Block(dim=dims[i], drop_path=dp_rates[cur + j])
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], num_classes)
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(
x.mean([-2, -1])
) # global average pooling, (N, C, H, W) -> (N, C)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
model_cfgs = {
"atto": [[2, 2, 6, 2], [40, 80, 160, 320]],
"femto": [[2, 2, 6, 2], [48, 96, 192, 384]],
"pico": [[2, 2, 6, 2], [64, 128, 256, 512]],
"nano": [[2, 2, 8, 2], [80, 160, 320, 640]],
"tiny": [[3, 3, 9, 3], [96, 192, 384, 768]],
"base": [[3, 3, 27, 3], [128, 256, 512, 1024]],
"large": [[3, 3, 27, 3], [192, 384, 768, 1536]],
"huge": [[3, 3, 27, 3], [352, 704, 1408, 2816]],
}
def convnextv2(cfg_name, **kwargs):
cfg = model_cfgs[cfg_name]
model = ConvNeXtV2(depths=cfg[0], dims=cfg[1], **kwargs)
return model
# ========= Dataset =========
EXTENSION = [".png", ".jpg", ".jpeg"]
def file_ext(fname):
return os.path.splitext(fname)[1].lower()
def rescale_pad(image, output_size, random_pad=False):
h, w = image.shape[-2:]
if h != output_size or w != output_size:
r = min(output_size / h, output_size / w)
new_h, new_w = int(h * r), int(w * r)
if random_pad:
r2 = random.uniform(0.9, 1)
new_h, new_w = int(new_h * r2), int(new_w * r2)
ph = output_size - new_h
pw = output_size - new_w
left = random.randint(0, pw) if random_pad else pw // 2
right = pw - left
top = random.randint(0, ph) if random_pad else ph // 2
bottom = ph - top
image = transforms.functional.resize(image, [new_h, new_w])
image = transforms.functional.pad(
image, [left, top, right, bottom], random.uniform(0, 1) if random_pad else 0
)
return image
def random_crop(image, min_rate=0.8):
h, w = image.shape[-2:]
new_h, new_w = int(h * random.uniform(min_rate, 1)), int(w * random.uniform(min_rate, 1))
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
image = image[:, top: top + new_h, left: left + new_w]
return image
class AnimeAestheticDataset(Dataset):
def __init__(self, path, img_size, xflip=True):
all_files = {
os.path.relpath(os.path.join(root, fname), path)
for root, _dirs, files in os.walk(path)
for fname in files
}
all_images = sorted(
fname for fname in all_files if file_ext(fname) in EXTENSION
)
with open(os.path.join(path, "label.json"), "r", encoding="utf8") as f:
labels = json.load(f)
image_list = []
label_list = []
for fname in all_images:
if fname not in labels:
continue
image_list.append(fname)
label_list.append(labels[fname])
self.path = path
self.img_size = img_size
self.xflip = xflip
self.image_list = image_list
self.label_list = label_list
def __len__(self):
length = len(self.image_list)
if self.xflip:
length *= 2
return length
def __getitem__(self, index):
real_len = len(self.image_list)
fname = self.image_list[index % real_len]
label = self.label_list[index % real_len]
image = Image.open(os.path.join(self.path, fname)).convert("RGB")
image = transforms.functional.to_tensor(image)
image = random_crop(image, 0.8)
image = rescale_pad(image, self.img_size, True)
if index // real_len != 0:
image = transforms.functional.hflip(image)
label = torch.tensor([label], dtype=torch.float32)
return image, label
# ========= Train =========
class AnimeAesthetic(pl.LightningModule):
def __init__(self, cfg: str, drop_path_rate=0.0, ema_decay=0):
super().__init__()
self.net = convnextv2(cfg, in_chans=3, num_classes=1, drop_path_rate=drop_path_rate)
self.ema_decay = ema_decay
self.ema = None
if ema_decay > 0:
self.ema = deepcopy(self.net)
self.ema.requires_grad_(False)
def configure_optimizers(self):
optimizer = optim.Adam(
self.net.parameters(),
lr=0.001,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=0,
)
return optimizer
def forward(self, x, use_ema=False):
x = (x - 0.5) / 0.5
net = self.ema if use_ema else self.net
return net(x)
def training_step(self, batch, batch_idx):
images, labels = batch
loss = F.mse_loss(self.forward(images, False), labels)
self.log_dict({"train/loss": loss})
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch
mae = F.l1_loss(self.forward(images, False), labels)
logs = {"val/mae": mae}
if self.ema is not None:
mae_ema = F.l1_loss(self.forward(images, True), labels)
logs["val/mae_ema"] = mae_ema
self.log_dict(logs, sync_dist=True)
def on_train_batch_end(self, outputs, batch, batch_idx):
if self.ema is not None:
with torch.no_grad():
for ema_v, model_v in zip(
self.ema.state_dict().values(), self.net.state_dict().values()
):
ema_v.copy_(
self.ema_decay * ema_v + (1.0 - self.ema_decay) * model_v
)
def main(opt):
if not os.path.exists("lightning_logs"):
os.mkdir("lightning_logs")
torch.manual_seed(0)
np.random.seed(0)
print("---load dataset---")
full_dataset = AnimeAestheticDataset(opt.data, opt.img_size)
full_dataset_len = len(full_dataset)
train_dataset_len = int(full_dataset_len * opt.data_split)
val_dataset_len = full_dataset_len - train_dataset_len
train_dataset, val_dataset = torch.utils.data.random_split(
full_dataset, [train_dataset_len, val_dataset_len]
)
train_dataloader = DataLoader(
train_dataset,
batch_size=opt.batch_size_train,
shuffle=True,
persistent_workers=True,
num_workers=opt.workers_train,
pin_memory=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=opt.batch_size_val,
shuffle=False,
persistent_workers=True,
num_workers=opt.workers_val,
pin_memory=True,
)
print(f"train: {len(train_dataset)}")
print(f"val: {len(val_dataset)}")
print("---define model---")
if opt.resume != "":
anime_aesthetic = AnimeAesthetic.load_from_checkpoint(
opt.resume, cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay
)
else:
anime_aesthetic = AnimeAesthetic(cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay)
print("---start train---")
checkpoint_callback = ModelCheckpoint(
monitor="val/mae",
mode="min",
save_top_k=1,
save_last=True,
auto_insert_metric_name=False,
filename="epoch={epoch},mae={val/mae:.4f}",
)
callbacks = [checkpoint_callback]
if opt.ema_decay > 0:
checkpoint_ema_callback = ModelCheckpoint(
monitor="val/mae_ema",
mode="min",
save_top_k=1,
save_last=False,
auto_insert_metric_name=False,
filename="epoch={epoch},mae-ema={val/mae_ema:.4f}",
)
callbacks.append(checkpoint_ema_callback)
trainer = Trainer(
precision=32 if opt.fp32 else 16,
accelerator=opt.accelerator,
devices=opt.devices,
max_epochs=opt.epoch,
benchmark=opt.benchmark,
accumulate_grad_batches=opt.acc_step,
val_check_interval=opt.val_epoch,
log_every_n_steps=opt.log_step,
strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
callbacks=callbacks,
)
trainer.fit(anime_aesthetic, train_dataloader, val_dataloader)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# model args
parser.add_argument(
"--cfg",
type=str,
default="tiny",
choices=list(model_cfgs.keys()),
help="model configure",
)
parser.add_argument(
"--resume", type=str, default="", help="resume training from ckpt"
)
parser.add_argument(
"--img-size",
type=int,
default=768,
help="image size for training and validation",
)
# dataset args
parser.add_argument(
"--data", type=str, default="./data", help="dataset path"
)
parser.add_argument(
"--data-split",
type=float,
default=0.9999,
help="split rate for training and validation",
)
# training args
parser.add_argument("--epoch", type=int, default=100, help="epoch num")
parser.add_argument(
"--batch-size-train", type=int, default=16, help="batch size for training"
)
parser.add_argument(
"--batch-size-val", type=int, default=2, help="batch size for val"
)
parser.add_argument(
"--workers-train",
type=int,
default=4,
help="workers num for training dataloader",
)
parser.add_argument(
"--workers-val",
type=int,
default=4,
help="workers num for validation dataloader",
)
parser.add_argument(
"--acc-step", type=int, default=8, help="gradient accumulation step"
)
parser.add_argument(
"--drop-path", type=float, default=0.1, help="Drop path rate"
)
parser.add_argument(
"--ema-decay", type=float, default=0.9999, help="use ema if ema-decay > 0"
)
parser.add_argument(
"--accelerator",
type=str,
default="gpu",
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
help="accelerator",
)
parser.add_argument("--devices", type=int, default=4, help="devices num")
parser.add_argument(
"--fp32", action="store_true", default=False, help="disable mix precision"
)
parser.add_argument(
"--benchmark", action="store_true", default=True, help="enable cudnn benchmark"
)
parser.add_argument(
"--log-step", type=int, default=2, help="log training loss every n steps"
)
parser.add_argument(
"--val-epoch", type=int, default=0.025, help="valid and save every n epoch"
)
opt = parser.parse_args()
print(opt)
main(opt)
|