File size: 16,643 Bytes
5a76c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4ff36
 
 
5a76c1a
 
0b4ff36
 
 
 
5a76c1a
 
0b4ff36
5a76c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4ff36
5a76c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b4ff36
5a76c1a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import argparse
import json
import os
import random
from copy import deepcopy

import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from timm.models.layers import DropPath, trunc_normal_
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.transforms import functional


# ========= Model =========

# copy from https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py


class LayerNorm(nn.Module):
    """LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(
                x, self.normalized_shape, self.weight, self.bias, self.eps
            )
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class GRN(nn.Module):
    """GRN (Global Response Normalization) layer"""

    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x


class Block(nn.Module):
    """ConvNeXtV2 Block.

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(self, dim, drop_path=0.0):
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim, dim, kernel_size=7, padding=3, groups=dim
        )  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, 4 * dim
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class ConvNeXtV2(nn.Module):
    """ConvNeXt V2

    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int[]): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(
            self,
            in_chans=3,
            num_classes=1000,
            depths=[3, 3, 9, 3],
            dims=[96, 192, 384, 768],
            drop_path_rate=0.0,
            head_init_scale=1.0,
    ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = (
            nn.ModuleList()
        )  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = (
            nn.ModuleList()
        )  # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[
                    Block(dim=dims[i], drop_path=dp_rates[cur + j])
                    for j in range(depths[i])
                ]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward_features(self, x):
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
        return self.norm(
            x.mean([-2, -1])
        )  # global average pooling, (N, C, H, W) -> (N, C)

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


model_cfgs = {
    "atto": [[2, 2, 6, 2], [40, 80, 160, 320]],
    "femto": [[2, 2, 6, 2], [48, 96, 192, 384]],
    "pico": [[2, 2, 6, 2], [64, 128, 256, 512]],
    "nano": [[2, 2, 8, 2], [80, 160, 320, 640]],
    "tiny": [[3, 3, 9, 3], [96, 192, 384, 768]],
    "base": [[3, 3, 27, 3], [128, 256, 512, 1024]],
    "large": [[3, 3, 27, 3], [192, 384, 768, 1536]],
    "huge": [[3, 3, 27, 3], [352, 704, 1408, 2816]],
}


def convnextv2(cfg_name, **kwargs):
    cfg = model_cfgs[cfg_name]
    model = ConvNeXtV2(depths=cfg[0], dims=cfg[1], **kwargs)
    return model


# ========= Dataset =========

EXTENSION = [".png", ".jpg", ".jpeg"]


def file_ext(fname):
    return os.path.splitext(fname)[1].lower()


def rescale_pad(image, output_size, random_pad=False):
    h, w = image.shape[-2:]
    if h != output_size or w != output_size:
        r = min(output_size / h, output_size / w)
        new_h, new_w = int(h * r), int(w * r)
        if random_pad:
            r2 = random.uniform(0.9, 1)
            new_h, new_w = int(new_h * r2), int(new_w * r2)
        ph = output_size - new_h
        pw = output_size - new_w
        left = random.randint(0, pw) if random_pad else pw // 2
        right = pw - left
        top = random.randint(0, ph) if random_pad else ph // 2
        bottom = ph - top
        image = transforms.functional.resize(image, [new_h, new_w])
        image = transforms.functional.pad(
            image, [left, top, right, bottom], random.uniform(0, 1) if random_pad else 0
        )
    return image


def random_crop(image, min_rate=0.8):
    h, w = image.shape[-2:]
    new_h, new_w = int(h * random.uniform(min_rate, 1)), int(w * random.uniform(min_rate, 1))
    top = np.random.randint(0, h - new_h)
    left = np.random.randint(0, w - new_w)
    image = image[:, top: top + new_h, left: left + new_w]
    return image


class AnimeAestheticDataset(Dataset):
    def __init__(self, path, img_size, xflip=True):
        all_files = {
            os.path.relpath(os.path.join(root, fname), path)
            for root, _dirs, files in os.walk(path)
            for fname in files
        }
        all_images = sorted(
            fname for fname in all_files if file_ext(fname) in EXTENSION
        )
        with open(os.path.join(path, "label.json"), "r", encoding="utf8") as f:
            labels = json.load(f)
        image_list = []
        label_list = []
        for fname in all_images:
            if fname not in labels:
                continue
            image_list.append(fname)
            label_list.append(labels[fname])
        self.path = path
        self.img_size = img_size
        self.xflip = xflip
        self.image_list = image_list
        self.label_list = label_list

    def __len__(self):
        length = len(self.image_list)
        if self.xflip:
            length *= 2
        return length

    def __getitem__(self, index):
        real_len = len(self.image_list)
        fname = self.image_list[index % real_len]
        label = self.label_list[index % real_len]
        image = Image.open(os.path.join(self.path, fname)).convert("RGB")
        image = transforms.functional.to_tensor(image)
        image = random_crop(image, 0.8)
        image = rescale_pad(image, self.img_size, True)
        if index // real_len != 0:
            image = transforms.functional.hflip(image)
        label = torch.tensor([label], dtype=torch.float32)
        return image, label


# ========= Train =========


class AnimeAesthetic(pl.LightningModule):
    def __init__(self, cfg: str, drop_path_rate=0.0, ema_decay=0):
        super().__init__()
        self.net = convnextv2(cfg, in_chans=3, num_classes=1, drop_path_rate=drop_path_rate)
        self.ema_decay = ema_decay
        self.ema = None
        if ema_decay > 0:
            self.ema = deepcopy(self.net)
            self.ema.requires_grad_(False)

    def configure_optimizers(self):
        optimizer = optim.Adam(
            self.net.parameters(),
            lr=0.001,
            betas=(0.9, 0.999),
            eps=1e-08,
            weight_decay=0,
        )
        return optimizer

    def forward(self, x, use_ema=False):
        x = (x - 0.5) / 0.5
        net = self.ema if use_ema else self.net
        return net(x)

    def training_step(self, batch, batch_idx):
        images, labels = batch
        loss = F.mse_loss(self.forward(images, False), labels)
        self.log_dict({"train/loss": loss})
        return loss

    def validation_step(self, batch, batch_idx):
        images, labels = batch
        mae = F.l1_loss(self.forward(images, False), labels)
        logs = {"val/mae": mae}
        if self.ema is not None:
            mae_ema = F.l1_loss(self.forward(images, True), labels)
            logs["val/mae_ema"] = mae_ema
        self.log_dict(logs, sync_dist=True)

    def on_train_batch_end(self, outputs, batch, batch_idx):
        if self.ema is not None:
            with torch.no_grad():
                for ema_v, model_v in zip(
                        self.ema.state_dict().values(), self.net.state_dict().values()
                ):
                    ema_v.copy_(
                        self.ema_decay * ema_v + (1.0 - self.ema_decay) * model_v
                    )


def main(opt):
    if not os.path.exists("lightning_logs"):
        os.mkdir("lightning_logs")
    torch.manual_seed(0)
    np.random.seed(0)
    print("---load dataset---")
    full_dataset = AnimeAestheticDataset(opt.data, opt.img_size)
    full_dataset_len = len(full_dataset)
    train_dataset_len = int(full_dataset_len * opt.data_split)
    val_dataset_len = full_dataset_len - train_dataset_len
    train_dataset, val_dataset = torch.utils.data.random_split(
        full_dataset, [train_dataset_len, val_dataset_len]
    )
    train_dataloader = DataLoader(
        train_dataset,
        batch_size=opt.batch_size_train,
        shuffle=True,
        persistent_workers=True,
        num_workers=opt.workers_train,
        pin_memory=True,
    )
    val_dataloader = DataLoader(
        val_dataset,
        batch_size=opt.batch_size_val,
        shuffle=False,
        persistent_workers=True,
        num_workers=opt.workers_val,
        pin_memory=True,
    )
    print(f"train: {len(train_dataset)}")
    print(f"val: {len(val_dataset)}")
    print("---define model---")
    if opt.resume != "":
        anime_aesthetic = AnimeAesthetic.load_from_checkpoint(
            opt.resume, cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay
        )
    else:
        anime_aesthetic = AnimeAesthetic(cfg=opt.cfg, drop_path_rate=opt.drop_path, ema_decay=opt.ema_decay)

    print("---start train---")

    checkpoint_callback = ModelCheckpoint(
        monitor="val/mae",
        mode="min",
        save_top_k=1,
        save_last=True,
        auto_insert_metric_name=False,
        filename="epoch={epoch},mae={val/mae:.4f}",
    )
    callbacks = [checkpoint_callback]
    if opt.ema_decay > 0:
        checkpoint_ema_callback = ModelCheckpoint(
            monitor="val/mae_ema",
            mode="min",
            save_top_k=1,
            save_last=False,
            auto_insert_metric_name=False,
            filename="epoch={epoch},mae-ema={val/mae_ema:.4f}",
        )
        callbacks.append(checkpoint_ema_callback)
    trainer = Trainer(
        precision=32 if opt.fp32 else 16,
        accelerator=opt.accelerator,
        devices=opt.devices,
        max_epochs=opt.epoch,
        benchmark=opt.benchmark,
        accumulate_grad_batches=opt.acc_step,
        val_check_interval=opt.val_epoch,
        log_every_n_steps=opt.log_step,
        strategy="ddp_find_unused_parameters_false" if opt.devices > 1 else None,
        callbacks=callbacks,
    )
    trainer.fit(anime_aesthetic, train_dataloader, val_dataloader)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # model args
    parser.add_argument(
        "--cfg",
        type=str,
        default="tiny",
        choices=list(model_cfgs.keys()),
        help="model configure",
    )
    parser.add_argument(
        "--resume", type=str, default="", help="resume training from ckpt"
    )
    parser.add_argument(
        "--img-size",
        type=int,
        default=768,
        help="image size for training and validation",
    )

    # dataset args
    parser.add_argument(
        "--data", type=str, default="./data", help="dataset path"
    )
    parser.add_argument(
        "--data-split",
        type=float,
        default=0.9999,
        help="split rate for training and validation",
    )

    # training args
    parser.add_argument("--epoch", type=int, default=100, help="epoch num")
    parser.add_argument(
        "--batch-size-train", type=int, default=16, help="batch size for training"
    )
    parser.add_argument(
        "--batch-size-val", type=int, default=2, help="batch size for val"
    )
    parser.add_argument(
        "--workers-train",
        type=int,
        default=4,
        help="workers num for training dataloader",
    )
    parser.add_argument(
        "--workers-val",
        type=int,
        default=4,
        help="workers num for validation dataloader",
    )
    parser.add_argument(
        "--acc-step", type=int, default=8, help="gradient accumulation step"
    )
    parser.add_argument(
        "--drop-path", type=float, default=0.1, help="Drop path rate"
    )
    parser.add_argument(
        "--ema-decay", type=float, default=0.9999, help="use ema if ema-decay > 0"
    )
    parser.add_argument(
        "--accelerator",
        type=str,
        default="gpu",
        choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto"],
        help="accelerator",
    )
    parser.add_argument("--devices", type=int, default=4, help="devices num")
    parser.add_argument(
        "--fp32", action="store_true", default=False, help="disable mix precision"
    )
    parser.add_argument(
        "--benchmark", action="store_true", default=True, help="enable cudnn benchmark"
    )
    parser.add_argument(
        "--log-step", type=int, default=2, help="log training loss every n steps"
    )
    parser.add_argument(
        "--val-epoch", type=int, default=0.025, help="valid and save every n epoch"
    )

    opt = parser.parse_args()
    print(opt)

    main(opt)