slickdata commited on
Commit
49df071
1 Parent(s): b2ad2a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -5
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
@@ -14,8 +15,8 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.5727
18
- - Rmse: 0.6483
19
 
20
  ## Model description
21
 
@@ -43,18 +44,22 @@ The following hyperparameters were used during training:
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_steps: 500
46
- - num_epochs: 7
47
 
48
  ### Training results
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Rmse |
51
  |:-------------:|:-----:|:----:|:---------------:|:------:|
52
- | 0.6985 | 4.0 | 500 | 0.5727 | 0.6483 |
 
 
 
 
53
 
54
 
55
  ### Framework versions
56
 
57
- - Transformers 4.30.2
58
  - Pytorch 2.0.1+cu118
59
  - Datasets 2.13.1
60
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  model-index:
 
15
 
16
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.2764
19
+ - Rmse: 0.2925
20
 
21
  ## Model description
22
 
 
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
  - lr_scheduler_warmup_steps: 500
47
+ - num_epochs: 16
48
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Rmse |
52
  |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | 0.7292 | 2.72 | 500 | 0.3805 | 0.5119 |
54
+ | 0.1778 | 5.43 | 1000 | 0.2802 | 0.3530 |
55
+ | 0.0487 | 8.15 | 1500 | 0.2764 | 0.2925 |
56
+ | 0.0209 | 10.86 | 2000 | 0.2921 | 0.2860 |
57
+ | 0.0113 | 13.58 | 2500 | 0.3244 | 0.2884 |
58
 
59
 
60
  ### Framework versions
61
 
62
+ - Transformers 4.31.0
63
  - Pytorch 2.0.1+cu118
64
  - Datasets 2.13.1
65
  - Tokenizers 0.13.3