sliu commited on
Commit
413497e
1 Parent(s): 1c375f2

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1562.73 +/- 105.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:011a76bbedbe9a247e9caa5d8da2cb890e884f5f9d759e7591772d9003833175
3
+ size 129260
a2c-AntBulletEnv-v0-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0-v1/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2cf5bd3940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2cf5bd39d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2cf5bd3a60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2cf5bd3af0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2cf5bd3b80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2cf5bd3c10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2cf5bd3ca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2cf5bd3d30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2cf5bd3dc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2cf5bd3e50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2cf5bd3ee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2cf5bd3f70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f2cf5bd13c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674248909644788179,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABqXs760xj49sbUdP6nbbT47ZjW/mah2vpYDiT6iqVK/Ws+XP/aSpj4V650+Hb4XvjxORb9GC2Y+EMSfPsZAMr/+W3c9jTyTPC4dXT8OhhM9XNc7v0GWx77wxtI9vbE3P3M4Rj/b+9o+nXT0PlYxhb+7RE2+iag6Phg3IT8jSyU/7hsUP4koUL8VMSK+t40Av+L9db4/hoi/yEd9v1gFXD43Gdg9nxRVPiFwNz+XINI+JzK9P73beL55y0K+oE6FPVdeBb+H2Ls+kakHP/S6v7+UT6W/2/vaPp109D76BHY/mv7EP6Wtpb51XQA/6zQHQMYnDr/tRvc9pKy3vyMeRL/9W+0+giOYP/hUez8YoQY/J49SP79sE74ipTs/sreFPnVIvb8EFHO+HBnevqdV0T8NECg/FtSJPkgmmj+hyIM/czhGP9v72j6ddPQ+VjGFv8NeEj/mi2w++IwhP4odgT9SlDq/8awfvb/vPb6gC1q/+VETP57DjL9CX9g94RbJv3UaIb9ZnYU/IBElPnGQYj8M+oy+w9UFQPJGyj64vp2/NGVjvyFGAD5Vh/o/OLQeP5RPpb/b+9o+nXT0PvoEdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvHuO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu80FPgAAAADYDPu/AAAAAKe3sb0AAAAAaE//PwAAAAA8qwK9AAAAAAYA5j8AAAAAAdFRPQAAAAD5Tey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlaQMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgClgET4AAAAAjcHlvwAAAABNT/o9AAAAAD6N3D8AAAAAofvAvQAAAAB/LPc/AAAAAAuDX7wAAAAAtk3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuAOzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICYxaW9AAAAAChu478AAAAA7W8tPAAAAACkQ+g/AAAAAHKFqz0AAAAARCcBQAAAAABb0FM9AAAAANO++78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7jWS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc1uluwAAAAAdRNq/AAAAAPrZdbwAAAAAxOXcPwAAAACenEw7AAAAABTtAEAAAAAAv9kJPgAAAABuC/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdzvho/RmeMAWyUTegDjAF0lEdAppPGQMhHLHV9lChoBkdAmFT5TdcjaGgHTegDaAhHQKaVSLG7z091fZQoaAZHQJeshVFQVKxoB03oA2gIR0CmmJxlYlpodX2UKGgGR0CYije8wpOOaAdN6ANoCEdApp6HuE25x3V9lChoBkdAlxvXJtBOYmgHTegDaAhHQKafSrUb1h91fZQoaAZHQJZqwEQoTf1oB03oA2gIR0CmoLIYFaB7dX2UKGgGR0CYC8yNn5BUaAdN6ANoCEdApqQA5imVJXV9lChoBkdAmApTCHh0hmgHTegDaAhHQKaqFdIGyHF1fZQoaAZHQJUYXhn8KohoB03oA2gIR0CmquBdUsFudX2UKGgGR0CVJP9cry2AaAdN6ANoCEdApqxHPTodMnV9lChoBkdAle7GEf1YhmgHTegDaAhHQKavlLEDQqt1fZQoaAZHQJg3h2hZha1oB03oA2gIR0CmtafGMn7YdX2UKGgGR0CPGIs3AEdOaAdN6ANoCEdAprZye7L+xXV9lChoBkdAlgX8TBZZCGgHTegDaAhHQKa39+glF+d1fZQoaAZHQJZj+sV+I/JoB03oA2gIR0Cmu2QX668QdX2UKGgGR0CUVYIQe3hGaAdN6ANoCEdApsFxOJtSAHV9lChoBkdAk6lumNzbOGgHTegDaAhHQKbCOUnogV51fZQoaAZHQJg87HcUM5RoB03oA2gIR0Cmw6ZsKsuGdX2UKGgGR0CTXr4/NZ/1aAdN6ANoCEdApschlBhQWXV9lChoBkdAkv6rD63y7WgHTegDaAhHQKbNUqxTsIF1fZQoaAZHQJJ3nvlU6xRoB03oA2gIR0CmzhYoZydXdX2UKGgGR0CZyl4dIXj3aAdN6ANoCEdAps+D3/Pw/nV9lChoBkdAlnFMinpB5WgHTegDaAhHQKbS430f5k91fZQoaAZHQJmIRBt1p0xoB03oA2gIR0Cm2NovSMLndX2UKGgGR0CVSpyKNyYHaAdN6ANoCEdAptmfZwn6VXV9lChoBkdAmYQQxWT5f2gHTegDaAhHQKbbBU4JeE91fZQoaAZHQJaKsl9jPOZoB03oA2gIR0Cm3mqYAsCldX2UKGgGR0CX8EqY7aIvaAdN6ANoCEdApuRdKIznBHV9lChoBkdAmdCLZSNwSGgHTegDaAhHQKblJAZ88cN1fZQoaAZHQJVeDELpiZxoB03oA2gIR0Cm5pIbOu7pdX2UKGgGR0CVV9IVdonKaAdN6ANoCEdApun3s/pt8HV9lChoBkdAlnWViF0xM2gHTegDaAhHQKbwDgHeJpF1fZQoaAZHQJkLlxxT851oB03oA2gIR0Cm8Nahxo7FdX2UKGgGR0CagYg/C66KaAdN6ANoCEdApvJEJIDoyXV9lChoBkdAmaAVD8cdYGgHTegDaAhHQKb1n/o7muF1fZQoaAZHQJaolpZfUnZoB03oA2gIR0Cm+68feUILdX2UKGgGR0CWsghUBGQTaAdN6ANoCEdApvyCjvd/KHV9lChoBkdAmTNPIGQjlmgHTegDaAhHQKb94/u9eyB1fZQoaAZHQJeEBbor4FloB03oA2gIR0CnAUNkWhysdX2UKGgGR0CXKacer+5waAdN6ANoCEdApweDqyGBWnV9lChoBkdAjuTVB+nZTWgHTegDaAhHQKcIR0nPVut1fZQoaAZHQJSCeq4pc5doB03oA2gIR0CnCbz/6wdKdX2UKGgGR0CTJ1dM0xdqaAdN6ANoCEdApw0keCCjDnV9lChoBkdAk7QgxrSE12gHTegDaAhHQKcTZV/+bVl1fZQoaAZHQJQO6H9FWn1oB03oA2gIR0CnFCyK3uuzdX2UKGgGR0CKlMI6bONYaAdN6ANoCEdApxWfnr6ciHV9lChoBkdAkbiwmNR3vGgHTegDaAhHQKcY+kTpPh11fZQoaAZHQJii+Pkq+aloB03oA2gIR0CnHx5H3DekdX2UKGgGR0CU/Lle4TbnaAdN6ANoCEdApx/o5o4+83V9lChoBkdAmGybUgB91GgHTegDaAhHQKchVKISDh91fZQoaAZHQJe2dUYKpkxoB03oA2gIR0CnJKsxO+IudX2UKGgGR0CaBSOmzjWDaAdN6ANoCEdApyq+eOGTLXV9lChoBkdAmNZCPhhpg2gHTegDaAhHQKcrjpRoAXF1fZQoaAZHQJkZf95yEL9oB03oA2gIR0CnLPhMajvedX2UKGgGR0CcfHsMy8BdaAdN6ANoCEdApzB2UhV2inV9lChoBkdAmt+El/pdKWgHTegDaAhHQKc2lImPYFt1fZQoaAZHQJ0zJK5CngpoB03oA2gIR0CnN2V4HHFQdX2UKGgGR0CZNyZE2HclaAdN6ANoCEdApzjgNVinYXV9lChoBkdAmsSk1ZTya2gHTegDaAhHQKc8V4LThHd1fZQoaAZHQJbbO2MKkVNoB03oA2gIR0CnQqBXjlxPdX2UKGgGR0CZuerR0EHMaAdN6ANoCEdAp0NoEwFkhHV9lChoBkdAmlBHX7Lt/mgHTegDaAhHQKdE3EP1+RZ1fZQoaAZHQJqxI5tFa0RoB03oA2gIR0CnSDrB0p3HdX2UKGgGR0CaM5/G2kSFaAdN6ANoCEdAp05J5s0pE3V9lChoBkdAmUP/N7jT8mgHTegDaAhHQKdPFY7q6e51fZQoaAZHQJiCJmL9/BpoB03oA2gIR0CnUH6IN3GGdX2UKGgGR0CYr7JXyRSxaAdN6ANoCEdAp1PN03fhuXV9lChoBkdAmKD49gWrO2gHTegDaAhHQKdZ0qH446x1fZQoaAZHQJoNuyxA0KtoB03oA2gIR0CnWpr5AQg+dX2UKGgGR0CYOozNUwSKaAdN6ANoCEdAp1wE7OmixnV9lChoBkdAnAQx6Skj5mgHTegDaAhHQKdfVPgvUSZ1fZQoaAZHQIxalIbwSapoB01wAmgIR0CnYcyZa3ZxdX2UKGgGR0CXgyI065oXaAdN6ANoCEdAp2VeLxZuAXV9lChoBkdAljlfOIInjWgHTegDaAhHQKdnizw+dLB1fZQoaAZHQJcRdMrVe8hoB03oA2gIR0CnauZZB9kSdX2UKGgGR0CXYGabnX/YaAdN6ANoCEdAp21WiWVu8HV9lChoBkdAlq+ztXxOL2gHTegDaAhHQKdw4YYzi0h1fZQoaAZHQJktTryDqW1oB03oA2gIR0Cncx5WJaaDdX2UKGgGR0CWDVRplBhQaAdN6ANoCEdAp3Z0ZzgdfnV9lChoBkdAmbwIYvWYnmgHTegDaAhHQKd44qcVgx91fZQoaAZHQJlb8zwc5sFoB03oA2gIR0CnfJuxKQJYdX2UKGgGR0CSYjZ1FH8TaAdN6ANoCEdAp37pDCxeLXV9lChoBkdAmqRwXdj5K2gHTegDaAhHQKeCRv2oNut1fZQoaAZHQJbG4bNr0rdoB03oA2gIR0CnhW6kIomYdX2UKGgGR0CW2Ekrf+CLaAdN6ANoCEdAp4r5jFyaNXV9lChoBkdAmSV1ghKUV2gHTegDaAhHQKeN725hBqt1fZQoaAZHQJWPJRYRuj1oB03oA2gIR0CnkUoFNcnmdX2UKGgGR0CYB00elsP8aAdN6ANoCEdAp5PDundfs3V9lChoBkdAmYqax9oexWgHTegDaAhHQKeXaKRdQfp1fZQoaAZHQJZJiV9nbqRoB03oA2gIR0Cnmal4LThHdX2UKGgGR0CVy+S7Xg+AaAdN6ANoCEdAp50NXcQAdXV9lChoBkdAkWciojv/i2gHTegDaAhHQKefjpJwsGx1fZQoaAZHQJLAu5y2hIxoB03oA2gIR0CnoyeWOZLJdX2UKGgGR0CTqwJ0W/JvaAdN6ANoCEdAp6VjaVUuMHV9lChoBkdAkjfxPsRg7mgHTegDaAhHQKeo1lGPPs11fZQoaAZHQJbHTukUKzBoB03oA2gIR0Cnq09hZyMldX2UKGgGR0CWKWKe05U+aAdN6ANoCEdAp67y+JxecHV9lChoBkdAljeZHRTjvWgHTegDaAhHQKexI7NB4Ux1fZQoaAZHQJd6/E2pAD9oB03oA2gIR0CntIyfcvdudX2UKGgGR0CYB/ImgJ1JaAdN6ANoCEdAp7cD48EFGHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0aaf6ba57cd0c7039fd45ef506b010972021ca803b827e4d4da9dc3714f937e6
3
+ size 56190
a2c-AntBulletEnv-v0-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f90415eccfbeee73f8c76bc5311b4825270698bea3a98e79e1ff3504858190e
3
+ size 56958
a2c-AntBulletEnv-v0-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2cf5bd3940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2cf5bd39d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2cf5bd3a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2cf5bd3af0>", "_build": "<function ActorCriticPolicy._build at 0x7f2cf5bd3b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2cf5bd3c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2cf5bd3ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2cf5bd3d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2cf5bd3dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2cf5bd3e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2cf5bd3ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2cf5bd3f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2cf5bd13c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674248909644788179, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABqXs760xj49sbUdP6nbbT47ZjW/mah2vpYDiT6iqVK/Ws+XP/aSpj4V650+Hb4XvjxORb9GC2Y+EMSfPsZAMr/+W3c9jTyTPC4dXT8OhhM9XNc7v0GWx77wxtI9vbE3P3M4Rj/b+9o+nXT0PlYxhb+7RE2+iag6Phg3IT8jSyU/7hsUP4koUL8VMSK+t40Av+L9db4/hoi/yEd9v1gFXD43Gdg9nxRVPiFwNz+XINI+JzK9P73beL55y0K+oE6FPVdeBb+H2Ls+kakHP/S6v7+UT6W/2/vaPp109D76BHY/mv7EP6Wtpb51XQA/6zQHQMYnDr/tRvc9pKy3vyMeRL/9W+0+giOYP/hUez8YoQY/J49SP79sE74ipTs/sreFPnVIvb8EFHO+HBnevqdV0T8NECg/FtSJPkgmmj+hyIM/czhGP9v72j6ddPQ+VjGFv8NeEj/mi2w++IwhP4odgT9SlDq/8awfvb/vPb6gC1q/+VETP57DjL9CX9g94RbJv3UaIb9ZnYU/IBElPnGQYj8M+oy+w9UFQPJGyj64vp2/NGVjvyFGAD5Vh/o/OLQeP5RPpb/b+9o+nXT0PvoEdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABvHuO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu80FPgAAAADYDPu/AAAAAKe3sb0AAAAAaE//PwAAAAA8qwK9AAAAAAYA5j8AAAAAAdFRPQAAAAD5Tey/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlaQMtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgClgET4AAAAAjcHlvwAAAABNT/o9AAAAAD6N3D8AAAAAofvAvQAAAAB/LPc/AAAAAAuDX7wAAAAAtk3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANuAOzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICYxaW9AAAAAChu478AAAAA7W8tPAAAAACkQ+g/AAAAAHKFqz0AAAAARCcBQAAAAABb0FM9AAAAANO++78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7jWS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc1uluwAAAAAdRNq/AAAAAPrZdbwAAAAAxOXcPwAAAACenEw7AAAAABTtAEAAAAAAv9kJPgAAAABuC/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdzvho/RmeMAWyUTegDjAF0lEdAppPGQMhHLHV9lChoBkdAmFT5TdcjaGgHTegDaAhHQKaVSLG7z091fZQoaAZHQJeshVFQVKxoB03oA2gIR0CmmJxlYlpodX2UKGgGR0CYije8wpOOaAdN6ANoCEdApp6HuE25x3V9lChoBkdAlxvXJtBOYmgHTegDaAhHQKafSrUb1h91fZQoaAZHQJZqwEQoTf1oB03oA2gIR0CmoLIYFaB7dX2UKGgGR0CYC8yNn5BUaAdN6ANoCEdApqQA5imVJXV9lChoBkdAmApTCHh0hmgHTegDaAhHQKaqFdIGyHF1fZQoaAZHQJUYXhn8KohoB03oA2gIR0CmquBdUsFudX2UKGgGR0CVJP9cry2AaAdN6ANoCEdApqxHPTodMnV9lChoBkdAle7GEf1YhmgHTegDaAhHQKavlLEDQqt1fZQoaAZHQJg3h2hZha1oB03oA2gIR0CmtafGMn7YdX2UKGgGR0CPGIs3AEdOaAdN6ANoCEdAprZye7L+xXV9lChoBkdAlgX8TBZZCGgHTegDaAhHQKa39+glF+d1fZQoaAZHQJZj+sV+I/JoB03oA2gIR0Cmu2QX668QdX2UKGgGR0CUVYIQe3hGaAdN6ANoCEdApsFxOJtSAHV9lChoBkdAk6lumNzbOGgHTegDaAhHQKbCOUnogV51fZQoaAZHQJg87HcUM5RoB03oA2gIR0Cmw6ZsKsuGdX2UKGgGR0CTXr4/NZ/1aAdN6ANoCEdApschlBhQWXV9lChoBkdAkv6rD63y7WgHTegDaAhHQKbNUqxTsIF1fZQoaAZHQJJ3nvlU6xRoB03oA2gIR0CmzhYoZydXdX2UKGgGR0CZyl4dIXj3aAdN6ANoCEdAps+D3/Pw/nV9lChoBkdAlnFMinpB5WgHTegDaAhHQKbS430f5k91fZQoaAZHQJmIRBt1p0xoB03oA2gIR0Cm2NovSMLndX2UKGgGR0CVSpyKNyYHaAdN6ANoCEdAptmfZwn6VXV9lChoBkdAmYQQxWT5f2gHTegDaAhHQKbbBU4JeE91fZQoaAZHQJaKsl9jPOZoB03oA2gIR0Cm3mqYAsCldX2UKGgGR0CX8EqY7aIvaAdN6ANoCEdApuRdKIznBHV9lChoBkdAmdCLZSNwSGgHTegDaAhHQKblJAZ88cN1fZQoaAZHQJVeDELpiZxoB03oA2gIR0Cm5pIbOu7pdX2UKGgGR0CVV9IVdonKaAdN6ANoCEdApun3s/pt8HV9lChoBkdAlnWViF0xM2gHTegDaAhHQKbwDgHeJpF1fZQoaAZHQJkLlxxT851oB03oA2gIR0Cm8Nahxo7FdX2UKGgGR0CagYg/C66KaAdN6ANoCEdApvJEJIDoyXV9lChoBkdAmaAVD8cdYGgHTegDaAhHQKb1n/o7muF1fZQoaAZHQJaolpZfUnZoB03oA2gIR0Cm+68feUILdX2UKGgGR0CWsghUBGQTaAdN6ANoCEdApvyCjvd/KHV9lChoBkdAmTNPIGQjlmgHTegDaAhHQKb94/u9eyB1fZQoaAZHQJeEBbor4FloB03oA2gIR0CnAUNkWhysdX2UKGgGR0CXKacer+5waAdN6ANoCEdApweDqyGBWnV9lChoBkdAjuTVB+nZTWgHTegDaAhHQKcIR0nPVut1fZQoaAZHQJSCeq4pc5doB03oA2gIR0CnCbz/6wdKdX2UKGgGR0CTJ1dM0xdqaAdN6ANoCEdApw0keCCjDnV9lChoBkdAk7QgxrSE12gHTegDaAhHQKcTZV/+bVl1fZQoaAZHQJQO6H9FWn1oB03oA2gIR0CnFCyK3uuzdX2UKGgGR0CKlMI6bONYaAdN6ANoCEdApxWfnr6ciHV9lChoBkdAkbiwmNR3vGgHTegDaAhHQKcY+kTpPh11fZQoaAZHQJii+Pkq+aloB03oA2gIR0CnHx5H3DekdX2UKGgGR0CU/Lle4TbnaAdN6ANoCEdApx/o5o4+83V9lChoBkdAmGybUgB91GgHTegDaAhHQKchVKISDh91fZQoaAZHQJe2dUYKpkxoB03oA2gIR0CnJKsxO+IudX2UKGgGR0CaBSOmzjWDaAdN6ANoCEdApyq+eOGTLXV9lChoBkdAmNZCPhhpg2gHTegDaAhHQKcrjpRoAXF1fZQoaAZHQJkZf95yEL9oB03oA2gIR0CnLPhMajvedX2UKGgGR0CcfHsMy8BdaAdN6ANoCEdApzB2UhV2inV9lChoBkdAmt+El/pdKWgHTegDaAhHQKc2lImPYFt1fZQoaAZHQJ0zJK5CngpoB03oA2gIR0CnN2V4HHFQdX2UKGgGR0CZNyZE2HclaAdN6ANoCEdApzjgNVinYXV9lChoBkdAmsSk1ZTya2gHTegDaAhHQKc8V4LThHd1fZQoaAZHQJbbO2MKkVNoB03oA2gIR0CnQqBXjlxPdX2UKGgGR0CZuerR0EHMaAdN6ANoCEdAp0NoEwFkhHV9lChoBkdAmlBHX7Lt/mgHTegDaAhHQKdE3EP1+RZ1fZQoaAZHQJqxI5tFa0RoB03oA2gIR0CnSDrB0p3HdX2UKGgGR0CaM5/G2kSFaAdN6ANoCEdAp05J5s0pE3V9lChoBkdAmUP/N7jT8mgHTegDaAhHQKdPFY7q6e51fZQoaAZHQJiCJmL9/BpoB03oA2gIR0CnUH6IN3GGdX2UKGgGR0CYr7JXyRSxaAdN6ANoCEdAp1PN03fhuXV9lChoBkdAmKD49gWrO2gHTegDaAhHQKdZ0qH446x1fZQoaAZHQJoNuyxA0KtoB03oA2gIR0CnWpr5AQg+dX2UKGgGR0CYOozNUwSKaAdN6ANoCEdAp1wE7OmixnV9lChoBkdAnAQx6Skj5mgHTegDaAhHQKdfVPgvUSZ1fZQoaAZHQIxalIbwSapoB01wAmgIR0CnYcyZa3ZxdX2UKGgGR0CXgyI065oXaAdN6ANoCEdAp2VeLxZuAXV9lChoBkdAljlfOIInjWgHTegDaAhHQKdnizw+dLB1fZQoaAZHQJcRdMrVe8hoB03oA2gIR0CnauZZB9kSdX2UKGgGR0CXYGabnX/YaAdN6ANoCEdAp21WiWVu8HV9lChoBkdAlq+ztXxOL2gHTegDaAhHQKdw4YYzi0h1fZQoaAZHQJktTryDqW1oB03oA2gIR0Cncx5WJaaDdX2UKGgGR0CWDVRplBhQaAdN6ANoCEdAp3Z0ZzgdfnV9lChoBkdAmbwIYvWYnmgHTegDaAhHQKd44qcVgx91fZQoaAZHQJlb8zwc5sFoB03oA2gIR0CnfJuxKQJYdX2UKGgGR0CSYjZ1FH8TaAdN6ANoCEdAp37pDCxeLXV9lChoBkdAmqRwXdj5K2gHTegDaAhHQKeCRv2oNut1fZQoaAZHQJbG4bNr0rdoB03oA2gIR0CnhW6kIomYdX2UKGgGR0CW2Ekrf+CLaAdN6ANoCEdAp4r5jFyaNXV9lChoBkdAmSV1ghKUV2gHTegDaAhHQKeN725hBqt1fZQoaAZHQJWPJRYRuj1oB03oA2gIR0CnkUoFNcnmdX2UKGgGR0CYB00elsP8aAdN6ANoCEdAp5PDundfs3V9lChoBkdAmYqax9oexWgHTegDaAhHQKeXaKRdQfp1fZQoaAZHQJZJiV9nbqRoB03oA2gIR0Cnmal4LThHdX2UKGgGR0CVy+S7Xg+AaAdN6ANoCEdAp50NXcQAdXV9lChoBkdAkWciojv/i2gHTegDaAhHQKefjpJwsGx1fZQoaAZHQJLAu5y2hIxoB03oA2gIR0CnoyeWOZLJdX2UKGgGR0CTqwJ0W/JvaAdN6ANoCEdAp6VjaVUuMHV9lChoBkdAkjfxPsRg7mgHTegDaAhHQKeo1lGPPs11fZQoaAZHQJbHTukUKzBoB03oA2gIR0Cnq09hZyMldX2UKGgGR0CWKWKe05U+aAdN6ANoCEdAp67y+JxecHV9lChoBkdAljeZHRTjvWgHTegDaAhHQKexI7NB4Ux1fZQoaAZHQJd6/E2pAD9oB03oA2gIR0CntIyfcvdudX2UKGgGR0CYB/ImgJ1JaAdN6ANoCEdAp7cD48EFGHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (1,000 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1562.7322021045256, "std_reward": 105.80563733245397, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T23:08:45.923571"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b3f1307664abf16560a30de6ce67447b3521bc0ec85a4be960b5dfa7544d674
3
+ size 2521