|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GPTRefactConfig(PretrainedConfig): |
|
model_type = "gpt_refact" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "n_embd", |
|
"max_position_embeddings": "n_positions", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 49216, |
|
n_positions: int = 4096, |
|
n_embd: int = 1024, |
|
n_layer: int = 32, |
|
n_head: int = 64, |
|
max_position_embeddings: int = 4096, |
|
multi_query: bool = True, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=-1, |
|
eos_token_id=0, |
|
attention_softmax_in_fp32=False, |
|
scale_attention_softmax_in_fp32=False, |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
attn_pdrop=0.1, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = None |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
self.attention_softmax_in_fp32 = attention_softmax_in_fp32 |
|
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32 |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
self.multi_query = multi_query |
|
self.max_position_embeddings = max_position_embeddings |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|