--- license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - eval_loss: 1.9291 - eval_ANSWER: {'precision': 0.0166358595194085, 'recall': 0.044063647490820076, 'f1': 0.024152968802415294, 'number': 817} - eval_HEADER: {'precision': 0.004098360655737705, 'recall': 0.008403361344537815, 'f1': 0.005509641873278237, 'number': 119} - eval_QUESTION: {'precision': 0.08307501549907005, 'recall': 0.2488393686165274, 'f1': 0.12456425749477108, 'number': 1077} - eval_overall_precision: 0.0541 - eval_overall_recall: 0.1515 - eval_overall_f1: 0.0798 - eval_overall_accuracy: 0.1625 - eval_runtime: 4.0045 - eval_samples_per_second: 12.486 - eval_steps_per_second: 1.748 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1