--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: mit --- # smart-tribune/sentence-transformers-multilingual-e5-large This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model is based on [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base), to which a pooling (mean) and normalization layer has been added, and saved on a sentence transformers version. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('smart-tribune/sentence-transformers-multilingual-e5-large') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results **In progress** ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ```