Update README.md
Browse files
README.md
CHANGED
@@ -15,6 +15,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentence
|
|
15 |
|
16 |
<!--- Describe your model here -->
|
17 |
|
|
|
|
|
18 |
## Usage (Sentence-Transformers)
|
19 |
|
20 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
@@ -29,7 +31,7 @@ Then you can use the model like this:
|
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
-
model = SentenceTransformer('
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
@@ -55,8 +57,8 @@ def mean_pooling(model_output, attention_mask):
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
59 |
-
model = AutoModel.from_pretrained('
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
15 |
|
16 |
<!--- Describe your model here -->
|
17 |
|
18 |
+
This model is [snunlp/KR-SBERT-V40K-klueNLI-augSTS](https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS) with max input length 512.
|
19 |
+
|
20 |
## Usage (Sentence-Transformers)
|
21 |
|
22 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
33 |
|
34 |
+
model = SentenceTransformer('smartmind/ko-sbert-augSTS-maxlength512')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
|
|
57 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
58 |
|
59 |
# Load model from HuggingFace Hub
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained('smartmind/ko-sbert-augSTS-maxlength512')
|
61 |
+
model = AutoModel.from_pretrained('smartmind/ko-sbert-augSTS-maxlength512')
|
62 |
|
63 |
# Tokenize sentences
|
64 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|