|
from transformers import YolosImageProcessor, YolosForObjectDetection |
|
from PIL import Image |
|
import torch |
|
import requests |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
model = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny', local_files_only=True) |
|
image_processor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny", local_files_only=True) |
|
|
|
inputs = image_processor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
|
|
logits = outputs.logits |
|
bboxes = outputs.pred_boxes |
|
|
|
|
|
|
|
target_sizes = torch.tensor([image.size[::-1]]) |
|
results = image_processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] |
|
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
box = [round(i, 2) for i in box.tolist()] |
|
print( |
|
f"Detected {model.config.id2label[label.item()]} with confidence " |
|
f"{round(score.item(), 3)} at location {box}" |
|
) |
|
|