--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.39 +/- 12.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code # Create environment env = gym.make('LunarLander-v2') # Instantiate the agent model = PPO('MlpPolicy', env, verbose=1) # Train the agent model.learn(total_timesteps=int(2e5)) # TODO: Define a PPO MlpPolicy architecture # We use MultiLayerPerceptron (MLPPolicy) because the input is a vector, # if we had frames as input we would use CnnPolicy model = PPO( policy = 'MlpPolicy', env = env, n_steps = 4096, batch_size = 128, n_epochs = 8, gamma = 0.999, gae_lambda = 0.98, ent_coef = 0.01, verbose=1) # TODO: Train it for 1,000,000 timesteps model.learn(total_timesteps=2000000) # TODO: Specify file name for model and save the model to file model_name = "ppo-LunarLander-v2" model.save(model_name) # TODO: Evaluate the agent # Create a new environment for evaluation eval_env = Monitor(gym.make("LunarLander-v2")) # Evaluate the model with 10 evaluation episodes and deterministic=True mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) # Print the results print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```