File size: 12,985 Bytes
7105413 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 934b0a0 4210cd7 7105413 4210cd7 7105413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: febskxmodel_hug_0.pkl
widget:
- structuredData:
backlog_minutes:
- 793051
- 474385
- 785116
backlog_num_jobs:
- 302
- 193
- 302
max_minutes:
- 18
- 360
- 18
nnodes:
- 1
- 1
- 1
running_minutes:
- 1934034
- 1934094
- 1934034
running_num_jobs:
- 6827
- 6828
- 6827
---
# Model description
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number 0.
Window Start: 2022-02-01 00:06:58; Window End: 2022-03-03 04:05:20; Total Jobs in Window 0: 35812.
Best parameters: {'hgbc__learning_rate': 0.1, 'hgbc__max_depth': 9, 'hgbc__max_iter': 600}
Performance on TEST
Accuracy on entire set: 0.946168166304685
Accuracy for last bin scheduling assuming bins <= 0 are incorrect: 0.9454; (936/990)
Accuracy for last bin scheduling assuming bins <= 1 are incorrect: 0.9242; (915/990)
Accuracy for last bin scheduling assuming bins <= 2 are incorrect: 0.9121; (903/990)
Accuracy for last bin scheduling assuming bins <= 3 are incorrect: 0.8878; (879/990)
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|----------------------------|----------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
| verbose | False |
| scale | StandardScaler() |
| hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) |
| scale__copy | True |
| scale__with_mean | True |
| scale__with_std | True |
| hgbc__categorical_features | |
| hgbc__class_weight | |
| hgbc__early_stopping | auto |
| hgbc__interaction_cst | |
| hgbc__l2_regularization | 0.0 |
| hgbc__learning_rate | 0.1 |
| hgbc__loss | log_loss |
| hgbc__max_bins | 255 |
| hgbc__max_depth | 9 |
| hgbc__max_iter | 600 |
| hgbc__max_leaf_nodes | 31 |
| hgbc__min_samples_leaf | 20 |
| hgbc__monotonic_cst | |
| hgbc__n_iter_no_change | 10 |
| hgbc__random_state | |
| hgbc__scoring | loss |
| hgbc__tol | 1e-07 |
| hgbc__validation_fraction | 0.1 |
| hgbc__verbose | 0 |
| hgbc__warm_start | False |
</details>
### Model Plot
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier(max_depth=9, max_iter=600)</pre></div></div></div></div></div></div></div>
## Evaluation Results
| Metric | Value |
|-----------------------|-------------------|
| accuracy | 0.946168166304685 |
| classification report | precision recall f1-score support<br /><br /> 0 0.97 0.98 0.98 5075<br /> 1 0.74 0.57 0.64 218<br /> 2 0.70 0.59 0.64 108<br /> 3 0.67 0.55 0.60 86<br /> 4 0.89 0.92 0.90 959<br /><br /> accuracy 0.95 6446<br /> macro avg 0.79 0.72 0.75 6446<br />weighted avg 0.94 0.95 0.94 6446 |
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# citation_bibtex
bibtex
@inproceedings{...,year={2024}}
# get_started_code
import pickle
with open(dtc_pkl_filename, 'rb') as file:
clf = pickle.load(file)
# model_card_authors
Smruti Padhy
Joe Stubbs
# limitations
This model is ready to be used in production.
# model_description
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number0
# eval_method
The model is evaluated using test split, on accuracy and F1 score with macro average.
# confusion_matrix

|