File size: 12,985 Bytes
7105413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934b0a0
4210cd7
934b0a0
4210cd7
934b0a0
4210cd7
934b0a0
4210cd7
934b0a0
 
4210cd7
934b0a0
4210cd7
934b0a0
4210cd7
934b0a0
4210cd7
7105413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4210cd7
7105413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: febskxmodel_hug_0.pkl
widget:
- structuredData:
    backlog_minutes:
    - 793051
    - 474385
    - 785116
    backlog_num_jobs:
    - 302
    - 193
    - 302
    max_minutes:
    - 18
    - 360
    - 18
    nnodes:
    - 1
    - 1
    - 1
    running_minutes:
    - 1934034
    - 1934094
    - 1934034
    running_num_jobs:
    - 6827
    - 6828
    - 6827
---

# Model description

This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number 0.

Window Start: 2022-02-01 00:06:58; Window End: 2022-03-03 04:05:20; Total Jobs in Window 0: 35812.

Best parameters:  {'hgbc__learning_rate': 0.1, 'hgbc__max_depth': 9, 'hgbc__max_iter': 600}

Performance on TEST

Accuracy on entire set:  0.946168166304685 

Accuracy for last bin scheduling assuming bins <= 0 are incorrect: 0.9454; (936/990) 

Accuracy for last bin scheduling assuming bins <= 1 are incorrect: 0.9242; (915/990)

Accuracy for last bin scheduling assuming bins <= 2 are incorrect: 0.9121; (903/990)

Accuracy for last bin scheduling assuming bins <= 3 are incorrect: 0.8878; (879/990)

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter             | Value                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------|
| memory                     |                                                                                                    |
| steps                      | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
| verbose                    | False                                                                                              |
| scale                      | StandardScaler()                                                                                   |
| hgbc                       | HistGradientBoostingClassifier(max_depth=9, max_iter=600)                                          |
| scale__copy                | True                                                                                               |
| scale__with_mean           | True                                                                                               |
| scale__with_std            | True                                                                                               |
| hgbc__categorical_features |                                                                                                    |
| hgbc__class_weight         |                                                                                                    |
| hgbc__early_stopping       | auto                                                                                               |
| hgbc__interaction_cst      |                                                                                                    |
| hgbc__l2_regularization    | 0.0                                                                                                |
| hgbc__learning_rate        | 0.1                                                                                                |
| hgbc__loss                 | log_loss                                                                                           |
| hgbc__max_bins             | 255                                                                                                |
| hgbc__max_depth            | 9                                                                                                  |
| hgbc__max_iter             | 600                                                                                                |
| hgbc__max_leaf_nodes       | 31                                                                                                 |
| hgbc__min_samples_leaf     | 20                                                                                                 |
| hgbc__monotonic_cst        |                                                                                                    |
| hgbc__n_iter_no_change     | 10                                                                                                 |
| hgbc__random_state         |                                                                                                    |
| hgbc__scoring              | loss                                                                                               |
| hgbc__tol                  | 1e-07                                                                                              |
| hgbc__validation_fraction  | 0.1                                                                                                |
| hgbc__verbose              | 0                                                                                                  |
| hgbc__warm_start           | False                                                                                              |

</details>

### Model Plot

<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler()),(&#x27;hgbc&#x27;,HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler()),(&#x27;hgbc&#x27;,HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier(max_depth=9, max_iter=600)</pre></div></div></div></div></div></div></div>

## Evaluation Results

| Metric                | Value             |
|-----------------------|-------------------|
| accuracy              | 0.946168166304685 |
| classification report | precision    recall  f1-score   support<br /><br />           0       0.97      0.98      0.98      5075<br />           1       0.74      0.57      0.64       218<br />           2       0.70      0.59      0.64       108<br />           3       0.67      0.55      0.60        86<br />           4       0.89      0.92      0.90       959<br /><br />    accuracy                           0.95      6446<br />   macro avg       0.79      0.72      0.75      6446<br />weighted avg       0.94      0.95      0.94      6446                   |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# citation_bibtex

bibtex
@inproceedings{...,year={2024}}

# get_started_code

import pickle 
with open(dtc_pkl_filename, 'rb') as file: 
    clf = pickle.load(file)

# model_card_authors

Smruti Padhy
Joe Stubbs

# limitations

This model is ready to be used in production.

# model_description

This is a  Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number0

# eval_method

The model is evaluated using test split, on accuracy and F1 score with macro average.

# confusion_matrix

![confusion_matrix](confusion_matrix.png)