---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: febskxmodel_hug_0.pkl
widget:
- structuredData:
backlog_minutes:
- 793051
- 474385
- 785116
backlog_num_jobs:
- 302
- 193
- 302
max_minutes:
- 18
- 360
- 18
nnodes:
- 1
- 1
- 1
running_minutes:
- 1934034
- 1934094
- 1934034
running_num_jobs:
- 6827
- 6828
- 6827
---
# Model description
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number 0.
Window Start: 2022-02-01 00:06:58; Window End: 2022-03-03 04:05:20; Total Jobs in Window 0: 35812.
Best parameters: {'hgbc__learning_rate': 0.1, 'hgbc__max_depth': 9, 'hgbc__max_iter': 600}
Performance on TEST
Accuracy on entire set: 0.946168166304685
Accuracy for last bin scheduling assuming bins <= 0 are incorrect: 0.9454; (936/990)
Accuracy for last bin scheduling assuming bins <= 1 are incorrect: 0.9242; (915/990)
Accuracy for last bin scheduling assuming bins <= 2 are incorrect: 0.9121; (903/990)
Accuracy for last bin scheduling assuming bins <= 3 are incorrect: 0.8878; (879/990)
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|----------------------------|----------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
| verbose | False |
| scale | StandardScaler() |
| hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) |
| scale__copy | True |
| scale__with_mean | True |
| scale__with_std | True |
| hgbc__categorical_features | |
| hgbc__class_weight | |
| hgbc__early_stopping | auto |
| hgbc__interaction_cst | |
| hgbc__l2_regularization | 0.0 |
| hgbc__learning_rate | 0.1 |
| hgbc__loss | log_loss |
| hgbc__max_bins | 255 |
| hgbc__max_depth | 9 |
| hgbc__max_iter | 600 |
| hgbc__max_leaf_nodes | 31 |
| hgbc__min_samples_leaf | 20 |
| hgbc__monotonic_cst | |
| hgbc__n_iter_no_change | 10 |
| hgbc__random_state | |
| hgbc__scoring | loss |
| hgbc__tol | 1e-07 |
| hgbc__validation_fraction | 0.1 |
| hgbc__verbose | 0 |
| hgbc__warm_start | False |
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])
StandardScaler()
HistGradientBoostingClassifier(max_depth=9, max_iter=600)