--- library_name: sklearn license: mit tags: - sklearn - skops - tabular-classification model_format: pickle model_file: febskxmodel_hug_0.pkl widget: - structuredData: backlog_minutes: - 793051 - 474385 - 785116 backlog_num_jobs: - 302 - 193 - 302 max_minutes: - 18 - 360 - 18 nnodes: - 1 - 1 - 1 running_minutes: - 1934034 - 1934094 - 1934034 running_num_jobs: - 6827 - 6828 - 6827 --- # Model description This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number 0. Window Start: 2022-02-01 00:06:58; Window End: 2022-03-03 04:05:20; Total Jobs in Window 0: 35812. Best parameters: {'hgbc__learning_rate': 0.1, 'hgbc__max_depth': 9, 'hgbc__max_iter': 600} Performance on TEST Accuracy on entire set: 0.946168166304685 Accuracy for last bin scheduling assuming bins <= 0 are incorrect: 0.9454; (936/990) Accuracy for last bin scheduling assuming bins <= 1 are incorrect: 0.9242; (915/990) Accuracy for last bin scheduling assuming bins <= 2 are incorrect: 0.9121; (903/990) Accuracy for last bin scheduling assuming bins <= 3 are incorrect: 0.8878; (879/990) ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |----------------------------|----------------------------------------------------------------------------------------------------| | memory | | | steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] | | verbose | False | | scale | StandardScaler() | | hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) | | scale__copy | True | | scale__with_mean | True | | scale__with_std | True | | hgbc__categorical_features | | | hgbc__class_weight | | | hgbc__early_stopping | auto | | hgbc__interaction_cst | | | hgbc__l2_regularization | 0.0 | | hgbc__learning_rate | 0.1 | | hgbc__loss | log_loss | | hgbc__max_bins | 255 | | hgbc__max_depth | 9 | | hgbc__max_iter | 600 | | hgbc__max_leaf_nodes | 31 | | hgbc__min_samples_leaf | 20 | | hgbc__monotonic_cst | | | hgbc__n_iter_no_change | 10 | | hgbc__random_state | | | hgbc__scoring | loss | | hgbc__tol | 1e-07 | | hgbc__validation_fraction | 0.1 | | hgbc__verbose | 0 | | hgbc__warm_start | False |
### Model Plot
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results | Metric | Value | |-----------------------|-------------------| | accuracy | 0.946168166304685 | | classification report | precision recall f1-score support

0 0.97 0.98 0.98 5075
1 0.74 0.57 0.64 218
2 0.70 0.59 0.64 108
3 0.67 0.55 0.60 86
4 0.89 0.92 0.90 959

accuracy 0.95 6446
macro avg 0.79 0.72 0.75 6446
weighted avg 0.94 0.95 0.94 6446 | # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # citation_bibtex bibtex @inproceedings{...,year={2024}} # get_started_code import pickle with open(dtc_pkl_filename, 'rb') as file: clf = pickle.load(file) # model_card_authors Smruti Padhy Joe Stubbs # limitations This model is ready to be used in production. # model_description This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number0 # eval_method The model is evaluated using test split, on accuracy and F1 score with macro average. # confusion_matrix ![confusion_matrix](confusion_matrix.png)