---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- tabular-classification
model_format: skops
model_file: febskxmodel_hug_1.skops
widget:
- structuredData:
backlog_minutes:
- 246897
- 265856
- 622046
backlog_num_jobs:
- 211
- 298
- 369
max_minutes:
- 360
- 30
- 2160
nnodes:
- 1
- 1
- 1
running_minutes:
- 1934324
- 1934324
- 1934214
running_num_jobs:
- 6830
- 6830
- 6829
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|----------------------------|----------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] |
| verbose | False |
| scale | StandardScaler() |
| hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) |
| scale__copy | True |
| scale__with_mean | True |
| scale__with_std | True |
| hgbc__categorical_features | |
| hgbc__class_weight | |
| hgbc__early_stopping | auto |
| hgbc__interaction_cst | |
| hgbc__l2_regularization | 0.0 |
| hgbc__learning_rate | 0.1 |
| hgbc__loss | log_loss |
| hgbc__max_bins | 255 |
| hgbc__max_depth | 9 |
| hgbc__max_iter | 600 |
| hgbc__max_leaf_nodes | 31 |
| hgbc__min_samples_leaf | 20 |
| hgbc__monotonic_cst | |
| hgbc__n_iter_no_change | 10 |
| hgbc__random_state | |
| hgbc__scoring | loss |
| hgbc__tol | 1e-07 |
| hgbc__validation_fraction | 0.1 |
| hgbc__verbose | 0 |
| hgbc__warm_start | False |
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])
StandardScaler()
HistGradientBoostingClassifier(max_depth=9, max_iter=600)