--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - trl - sft - generated_from_trainer model-index: - name: Phi-3.5-MultiCap-6 results: [] --- # Phi-3.5-MultiCap-6 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9384 | 0.2256 | 50 | 0.9431 | | 0.6189 | 0.4512 | 100 | 0.6235 | | 0.5667 | 0.6768 | 150 | 0.5738 | | 0.6109 | 0.9024 | 200 | 0.5533 | | 0.537 | 1.1280 | 250 | 0.5418 | | 0.5254 | 1.3536 | 300 | 0.5341 | | 0.495 | 1.5792 | 350 | 0.5288 | | 0.5414 | 1.8049 | 400 | 0.5243 | | 0.5285 | 2.0305 | 450 | 0.5212 | | 0.4729 | 2.2561 | 500 | 0.5180 | | 0.5167 | 2.4817 | 550 | 0.5161 | | 0.5228 | 2.7073 | 600 | 0.5141 | | 0.5321 | 2.9329 | 650 | 0.5124 | | 0.5212 | 3.1585 | 700 | 0.5112 | | 0.5052 | 3.3841 | 750 | 0.5097 | | 0.4826 | 3.6097 | 800 | 0.5088 | | 0.5118 | 3.8353 | 850 | 0.5079 | | 0.4957 | 4.0609 | 900 | 0.5071 | | 0.4779 | 4.2865 | 950 | 0.5065 | | 0.4888 | 4.5121 | 1000 | 0.5061 | | 0.52 | 4.7377 | 1050 | 0.5055 | | 0.4892 | 4.9633 | 1100 | 0.5052 | | 0.4881 | 5.1889 | 1150 | 0.5051 | | 0.5071 | 5.4146 | 1200 | 0.5047 | | 0.515 | 5.6402 | 1250 | 0.5046 | | 0.491 | 5.8658 | 1300 | 0.5045 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1