File size: 2,162 Bytes
6278b5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
base_model: microsoft/Phi-3.5-mini-instruct
library_name: peft
license: mit
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Phi-3.5-MultiCap-ref-hybrid
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi-3.5-MultiCap-ref-hybrid
This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1489 | 0.1354 | 30 | 1.1589 |
| 0.7977 | 0.2707 | 60 | 0.7714 |
| 0.671 | 0.4061 | 90 | 0.6689 |
| 0.6645 | 0.5415 | 120 | 0.6312 |
| 0.613 | 0.6768 | 150 | 0.6102 |
| 0.6147 | 0.8122 | 180 | 0.5977 |
| 0.6391 | 0.9475 | 210 | 0.5899 |
| 0.5892 | 1.0829 | 240 | 0.5844 |
| 0.6056 | 1.2183 | 270 | 0.5803 |
| 0.5662 | 1.3536 | 300 | 0.5770 |
| 0.574 | 1.4890 | 330 | 0.5747 |
| 0.5985 | 1.6244 | 360 | 0.5730 |
| 0.578 | 1.7597 | 390 | 0.5719 |
| 0.5541 | 1.8951 | 420 | 0.5712 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1 |