File size: 6,925 Bytes
572c34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7deaf0
 
 
 
 
 
 
 
 
 
 
 
572c34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7deaf0
 
572c34f
 
 
 
64559b3
572c34f
 
 
 
 
e7deaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572c34f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: deberta-v3-base-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-finetuned-ner

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7679
- Overall Precision: 0.4915
- Overall Recall: 0.6463
- Overall F1: 0.5584
- Overall Accuracy: 0.9555
- Datasetname F1: 0.3304
- Hyperparametername F1: 0.6341
- Hyperparametervalue F1: 0.7463
- Methodname F1: 0.6093
- Metricname F1: 0.7089
- Metricvalue F1: 0.7500
- Taskname F1: 0.4426

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Datasetname F1 | Hyperparametername F1 | Hyperparametervalue F1 | Methodname F1 | Metricname F1 | Metricvalue F1 | Taskname F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:---------------------:|:----------------------:|:-------------:|:-------------:|:--------------:|:-----------:|
| No log        | 1.0   | 132  | 0.5046          | 0.2771            | 0.5041         | 0.3576     | 0.9356           | 0.2405         | 0.1988                | 0.4545                 | 0.4638        | 0.4539        | 0.6486         | 0.2793      |
| No log        | 2.0   | 264  | 0.3928          | 0.3344            | 0.6463         | 0.4407     | 0.9376           | 0.2449         | 0.3968                | 0.6292                 | 0.5641        | 0.5373        | 0.4583         | 0.3359      |
| No log        | 3.0   | 396  | 0.4714          | 0.4419            | 0.6179         | 0.5153     | 0.9533           | 0.3822         | 0.5310                | 0.7536                 | 0.6262        | 0.6328        | 0.6857         | 0.3291      |
| 0.5663        | 4.0   | 528  | 0.3741          | 0.4493            | 0.7114         | 0.5507     | 0.9509           | 0.4717         | 0.7241                | 0.6353                 | 0.5918        | 0.5714        | 0.6275         | 0.4372      |
| 0.5663        | 5.0   | 660  | 0.4202          | 0.3930            | 0.6870         | 0.5        | 0.9458           | 0.2759         | 0.6525                | 0.65                   | 0.5596        | 0.7097        | 0.7368         | 0.3573      |
| 0.5663        | 6.0   | 792  | 0.4676          | 0.4244            | 0.6850         | 0.5241     | 0.9473           | 0.3333         | 0.5949                | 0.7397                 | 0.5653        | 0.6988        | 0.7568         | 0.3652      |
| 0.5663        | 7.0   | 924  | 0.5744          | 0.4328            | 0.5955         | 0.5013     | 0.9517           | 0.2585         | 0.6167                | 0.5915                 | 0.5825        | 0.6386        | 0.7500         | 0.3824      |
| 0.1503        | 8.0   | 1056 | 0.5340          | 0.4309            | 0.6585         | 0.5209     | 0.9499           | 0.2976         | 0.6299                | 0.7105                 | 0.6140        | 0.6708        | 0.7568         | 0.3544      |
| 0.1503        | 9.0   | 1188 | 0.5229          | 0.4628            | 0.6829         | 0.5517     | 0.9531           | 0.4630         | 0.5103                | 0.6087                 | 0.625         | 0.6541        | 0.7778         | 0.4493      |
| 0.1503        | 10.0  | 1320 | 0.6287          | 0.4978            | 0.6748         | 0.5729     | 0.9563           | 0.4314         | 0.6500                | 0.7463                 | 0.6413        | 0.7432        | 0.7568         | 0.4108      |
| 0.1503        | 11.0  | 1452 | 0.5163          | 0.4571            | 0.7033         | 0.5540     | 0.9519           | 0.3925         | 0.5256                | 0.6024                 | 0.6828        | 0.6626        | 0.7368         | 0.4466      |
| 0.0735        | 12.0  | 1584 | 0.6737          | 0.5046            | 0.6687         | 0.5752     | 0.9555           | 0.3883         | 0.6615                | 0.6757                 | 0.6074        | 0.7051        | 0.7778         | 0.4577      |
| 0.0735        | 13.0  | 1716 | 0.5849          | 0.44              | 0.6931         | 0.5383     | 0.9480           | 0.3770         | 0.6555                | 0.6479                 | 0.5922        | 0.6957        | 0.6512         | 0.4071      |
| 0.0735        | 14.0  | 1848 | 0.8314          | 0.5018            | 0.5793         | 0.5377     | 0.9539           | 0.3            | 0.6549                | 0.6667                 | 0.5613        | 0.7361        | 0.7368         | 0.4294      |
| 0.0735        | 15.0  | 1980 | 0.5986          | 0.4549            | 0.6768         | 0.5441     | 0.9506           | 0.3793         | 0.6000                | 0.6667                 | 0.6181        | 0.7089        | 0.6829         | 0.3978      |
| 0.0408        | 16.0  | 2112 | 0.7579          | 0.4900            | 0.6443         | 0.5566     | 0.9541           | 0.4103         | 0.6032                | 0.6765                 | 0.6238        | 0.7123        | 0.6667         | 0.4217      |
| 0.0408        | 17.0  | 2244 | 0.9175          | 0.5285            | 0.6037         | 0.5636     | 0.9565           | 0.4            | 0.6789                | 0.7692                 | 0.5949        | 0.7101        | 0.6857         | 0.4122      |
| 0.0408        | 18.0  | 2376 | 0.7771          | 0.5041            | 0.6179         | 0.5553     | 0.9562           | 0.3684         | 0.6207                | 0.7246                 | 0.5842        | 0.7383        | 0.6667         | 0.4353      |
| 0.0226        | 19.0  | 2508 | 0.7992          | 0.5213            | 0.6463         | 0.5771     | 0.9569           | 0.32           | 0.6724                | 0.7353                 | 0.6485        | 0.7114        | 0.7179         | 0.4510      |
| 0.0226        | 20.0  | 2640 | 0.7679          | 0.4915            | 0.6463         | 0.5584     | 0.9555           | 0.3304         | 0.6341                | 0.7463                 | 0.6093        | 0.7089        | 0.7500         | 0.4426      |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1