File size: 10,207 Bytes
d585867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: scideberta-cs-tdm-pretrained-finetuned-ner-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scideberta-cs-tdm-pretrained-finetuned-ner-finetuned-ner

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7548
- Overall Precision: 0.5582
- Overall Recall: 0.7048
- Overall F1: 0.6230
- Overall Accuracy: 0.9578
- Datasetname F1: 0.6225
- Hyperparametername F1: 0.5707
- Hyperparametervalue F1: 0.6796
- Methodname F1: 0.6812
- Metricname F1: 0.5039
- Metricvalue F1: 0.7097
- Taskname F1: 0.5776

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Datasetname F1 | Hyperparametername F1 | Hyperparametervalue F1 | Methodname F1 | Metricname F1 | Metricvalue F1 | Taskname F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:---------------------:|:----------------------:|:-------------:|:-------------:|:--------------:|:-----------:|
| No log        | 1.0   | 132  | 0.6819          | 0.2314            | 0.3769         | 0.2867     | 0.9125           | 0.1270         | 0.2305                | 0.2479                 | 0.4072        | 0.3119        | 0.0635         | 0.2366      |
| No log        | 2.0   | 264  | 0.4337          | 0.3977            | 0.5687         | 0.4681     | 0.9429           | 0.4516         | 0.3704                | 0.5419                 | 0.5900        | 0.2446        | 0.4340         | 0.4609      |
| No log        | 3.0   | 396  | 0.3968          | 0.3617            | 0.6367         | 0.4613     | 0.9335           | 0.4828         | 0.3586                | 0.5649                 | 0.5331        | 0.3190        | 0.4800         | 0.4585      |
| 0.5603        | 4.0   | 528  | 0.3730          | 0.3605            | 0.6327         | 0.4593     | 0.9363           | 0.4750         | 0.3789                | 0.6066                 | 0.5376        | 0.3229        | 0.4571         | 0.4375      |
| 0.5603        | 5.0   | 660  | 0.4132          | 0.4650            | 0.6871         | 0.5546     | 0.9482           | 0.4943         | 0.4965                | 0.6577                 | 0.6465        | 0.4387        | 0.5306         | 0.5039      |
| 0.5603        | 6.0   | 792  | 0.4071          | 0.4482            | 0.6884         | 0.5429     | 0.9468           | 0.5541         | 0.4341                | 0.5991                 | 0.6037        | 0.4865        | 0.64           | 0.5688      |
| 0.5603        | 7.0   | 924  | 0.4077          | 0.4830            | 0.6952         | 0.5700     | 0.9508           | 0.5063         | 0.4953                | 0.7032                 | 0.6397        | 0.4286        | 0.6263         | 0.5469      |
| 0.1161        | 8.0   | 1056 | 0.5215          | 0.5426            | 0.6925         | 0.6085     | 0.9577           | 0.6423         | 0.5190                | 0.7115                 | 0.6711        | 0.5175        | 0.6286         | 0.5797      |
| 0.1161        | 9.0   | 1188 | 0.5192          | 0.4859            | 0.7020         | 0.5743     | 0.9518           | 0.5578         | 0.5195                | 0.5992                 | 0.6571        | 0.4744        | 0.5532         | 0.5611      |
| 0.1161        | 10.0  | 1320 | 0.5301          | 0.5478            | 0.7020         | 0.6154     | 0.9563           | 0.5732         | 0.5782                | 0.7619                 | 0.6462        | 0.4675        | 0.7253         | 0.5727      |
| 0.1161        | 11.0  | 1452 | 0.4965          | 0.5139            | 0.7048         | 0.5944     | 0.9531           | 0.5857         | 0.5290                | 0.7189                 | 0.6639        | 0.4235        | 0.6476         | 0.5532      |
| 0.049         | 12.0  | 1584 | 0.6207          | 0.5713            | 0.6925         | 0.6261     | 0.9582           | 0.64           | 0.5377                | 0.7594                 | 0.7207        | 0.5070        | 0.6136         | 0.5530      |
| 0.049         | 13.0  | 1716 | 0.6056          | 0.5360            | 0.7088         | 0.6104     | 0.9570           | 0.5921         | 0.5035                | 0.7000                 | 0.7115        | 0.4648        | 0.6939         | 0.5854      |
| 0.049         | 14.0  | 1848 | 0.6540          | 0.5804            | 0.6925         | 0.6315     | 0.9599           | 0.6466         | 0.5344                | 0.7324                 | 0.6874        | 0.5401        | 0.7083         | 0.5980      |
| 0.049         | 15.0  | 1980 | 0.5911          | 0.5068            | 0.7048         | 0.5896     | 0.9528           | 0.5399         | 0.5176                | 0.7150                 | 0.6397        | 0.4625        | 0.6800         | 0.5865      |
| 0.0225        | 16.0  | 2112 | 0.5788          | 0.5186            | 0.7007         | 0.5961     | 0.9531           | 0.5874         | 0.5011                | 0.7177                 | 0.6796        | 0.4810        | 0.6744         | 0.5517      |
| 0.0225        | 17.0  | 2244 | 0.6097          | 0.5399            | 0.6912         | 0.6062     | 0.9547           | 0.5811         | 0.5744                | 0.6900                 | 0.6439        | 0.5033        | 0.7253         | 0.5470      |
| 0.0225        | 18.0  | 2376 | 0.7006          | 0.5714            | 0.6748         | 0.6188     | 0.9590           | 0.6471         | 0.5645                | 0.6465                 | 0.6710        | 0.5426        | 0.6809         | 0.5755      |
| 0.0149        | 19.0  | 2508 | 0.6051          | 0.5400            | 0.7252         | 0.6190     | 0.9554           | 0.6443         | 0.5514                | 0.6547                 | 0.6777        | 0.5132        | 0.6947         | 0.6         |
| 0.0149        | 20.0  | 2640 | 0.7220          | 0.5995            | 0.6884         | 0.6409     | 0.9605           | 0.6429         | 0.5570                | 0.6806                 | 0.7339        | 0.5865        | 0.7416         | 0.5540      |
| 0.0149        | 21.0  | 2772 | 0.6912          | 0.5977            | 0.7034         | 0.6462     | 0.9599           | 0.6377         | 0.5387                | 0.7343                 | 0.7281        | 0.5846        | 0.7273         | 0.5899      |
| 0.0149        | 22.0  | 2904 | 0.6952          | 0.5802            | 0.6939         | 0.6320     | 0.9574           | 0.5867         | 0.5445                | 0.7358                 | 0.6951        | 0.5736        | 0.7473         | 0.5830      |
| 0.0097        | 23.0  | 3036 | 0.7600          | 0.6241            | 0.6912         | 0.6559     | 0.9618           | 0.6119         | 0.5895                | 0.7629                 | 0.7356        | 0.5512        | 0.6897         | 0.5837      |
| 0.0097        | 24.0  | 3168 | 0.7184          | 0.5924            | 0.6980         | 0.6408     | 0.9598           | 0.6486         | 0.5640                | 0.7179                 | 0.7146        | 0.5630        | 0.7174         | 0.5714      |
| 0.0097        | 25.0  | 3300 | 0.7120          | 0.5485            | 0.7007         | 0.6153     | 0.9566           | 0.6579         | 0.5441                | 0.6667                 | 0.6993        | 0.4774        | 0.6522         | 0.5766      |
| 0.0097        | 26.0  | 3432 | 0.7914          | 0.6009            | 0.7088         | 0.6504     | 0.9583           | 0.6443         | 0.6070                | 0.7293                 | 0.7082        | 0.5645        | 0.6737         | 0.5872      |
| 0.0065        | 27.0  | 3564 | 0.7986          | 0.5800            | 0.6952         | 0.6324     | 0.9589           | 0.6309         | 0.5521                | 0.7150                 | 0.7281        | 0.4844        | 0.7097         | 0.5714      |
| 0.0065        | 28.0  | 3696 | 0.7767          | 0.6087            | 0.7007         | 0.6515     | 0.9599           | 0.6364         | 0.5824                | 0.7526                 | 0.7169        | 0.5238        | 0.7097         | 0.6038      |
| 0.0065        | 29.0  | 3828 | 0.7435          | 0.6077            | 0.6912         | 0.6467     | 0.9612           | 0.6479         | 0.5674                | 0.7396                 | 0.7088        | 0.5255        | 0.7333         | 0.6066      |
| 0.0065        | 30.0  | 3960 | 0.8305          | 0.6230            | 0.6857         | 0.6528     | 0.9613           | 0.6483         | 0.5650                | 0.7817                 | 0.7341        | 0.4715        | 0.7174         | 0.5962      |
| 0.0051        | 31.0  | 4092 | 0.7180          | 0.5776            | 0.7088         | 0.6365     | 0.9583           | 0.6194         | 0.5825                | 0.7393                 | 0.6874        | 0.4923        | 0.7021         | 0.5962      |
| 0.0051        | 32.0  | 4224 | 0.7526          | 0.5708            | 0.6857         | 0.6230     | 0.9585           | 0.64           | 0.5276                | 0.7246                 | 0.7083        | 0.4627        | 0.6813         | 0.5922      |
| 0.0051        | 33.0  | 4356 | 0.7548          | 0.5582            | 0.7048         | 0.6230     | 0.9578           | 0.6225         | 0.5707                | 0.6796                 | 0.6812        | 0.5039        | 0.7097         | 0.5776      |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1