File size: 1,889 Bytes
09f6654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-squad
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-squad

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3618

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.8524        | 0.2711 | 1500  | 1.2645          |
| 0.7508        | 0.5422 | 3000  | 1.2776          |
| 0.7105        | 0.8133 | 4500  | 1.2793          |
| 0.6261        | 1.0844 | 6000  | 1.5100          |
| 0.4492        | 1.3555 | 7500  | 1.4754          |
| 0.7289        | 1.6266 | 9000  | 1.2560          |
| 0.7526        | 1.8977 | 10500 | 1.2356          |
| 0.6204        | 2.1688 | 12000 | 1.3780          |
| 0.5492        | 2.4399 | 13500 | 1.3522          |
| 0.534         | 2.7110 | 15000 | 1.3761          |
| 0.5376        | 2.9821 | 16500 | 1.3618          |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1