Update README.md
Browse files
README.md
CHANGED
@@ -176,4 +176,87 @@ prompt_template: '<|im_start|>system
|
|
176 |
|
177 |
'
|
178 |
---
|
179 |
-
# Weyaxi/Einstein-v5-v0.2-7B AWQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
'
|
178 |
---
|
179 |
+
# Weyaxi/Einstein-v5-v0.2-7B AWQ
|
180 |
+
|
181 |
+
- Model creator: [Weyaxi](https://huggingface.co/Weyaxi)
|
182 |
+
- Original model: [Einstein-v5-v0.2-7B](https://huggingface.co/Weyaxi/Einstein-v5-v0.2-7B)
|
183 |
+
|
184 |
+
## Model Summary
|
185 |
+
|
186 |
+
This model is a full fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) on diverse datasets.
|
187 |
+
|
188 |
+
This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
|
189 |
+
|
190 |
+
This model's training was sponsored by [sablo.ai](https://sablo.ai).
|
191 |
+
|
192 |
+
## How to use
|
193 |
+
|
194 |
+
### Install the necessary packages
|
195 |
+
|
196 |
+
```bash
|
197 |
+
pip install --upgrade autoawq autoawq-kernels
|
198 |
+
```
|
199 |
+
|
200 |
+
### Example Python code
|
201 |
+
|
202 |
+
```python
|
203 |
+
from awq import AutoAWQForCausalLM
|
204 |
+
from transformers import AutoTokenizer, TextStreamer
|
205 |
+
|
206 |
+
model_path = "solidrust/Einstein-v5-v0.2-7B-AWQ"
|
207 |
+
system_message = "You are Alpert Einstein, incarnated a powerful AI."
|
208 |
+
|
209 |
+
# Load model
|
210 |
+
model = AutoAWQForCausalLM.from_quantized(model_path,
|
211 |
+
fuse_layers=True)
|
212 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
213 |
+
trust_remote_code=True)
|
214 |
+
streamer = TextStreamer(tokenizer,
|
215 |
+
skip_prompt=True,
|
216 |
+
skip_special_tokens=True)
|
217 |
+
|
218 |
+
# Convert prompt to tokens
|
219 |
+
prompt_template = """\
|
220 |
+
<|im_start|>system
|
221 |
+
{system_message}<|im_end|>
|
222 |
+
<|im_start|>user
|
223 |
+
{prompt}<|im_end|>
|
224 |
+
<|im_start|>assistant"""
|
225 |
+
|
226 |
+
prompt = "You're standing on the surface of the Earth. "\
|
227 |
+
"You walk one mile south, one mile west and one mile north. "\
|
228 |
+
"You end up exactly where you started. Where are you?"
|
229 |
+
|
230 |
+
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
|
231 |
+
return_tensors='pt').input_ids.cuda()
|
232 |
+
|
233 |
+
# Generate output
|
234 |
+
generation_output = model.generate(tokens,
|
235 |
+
streamer=streamer,
|
236 |
+
max_new_tokens=512)
|
237 |
+
|
238 |
+
```
|
239 |
+
|
240 |
+
### About AWQ
|
241 |
+
|
242 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
243 |
+
|
244 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
245 |
+
|
246 |
+
It is supported by:
|
247 |
+
|
248 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
249 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
250 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
251 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
252 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
253 |
+
|
254 |
+
## Prompt template: ChatML
|
255 |
+
|
256 |
+
```plaintext
|
257 |
+
<|im_start|>system
|
258 |
+
{system_message}<|im_end|>
|
259 |
+
<|im_start|>user
|
260 |
+
{prompt}<|im_end|>
|
261 |
+
<|im_start|>assistant
|
262 |
+
```
|