Smokeweaver
commited on
Update model card
Browse files
README.md
CHANGED
@@ -127,7 +127,7 @@ model-index:
|
|
127 |
name: Open LLM Leaderboard
|
128 |
library_name: transformers
|
129 |
model_creator: mlabonne
|
130 |
-
model_name:
|
131 |
model_type: mistral
|
132 |
pipeline_tag: text-generation
|
133 |
inference: false
|
@@ -145,3 +145,97 @@ prompt_template: '<|im_start|>system
|
|
145 |
quantized_by: Suparious
|
146 |
---
|
147 |
# mlabonne/NeuralHermes-2.5-Mistral-7B-laser AWQ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
name: Open LLM Leaderboard
|
128 |
library_name: transformers
|
129 |
model_creator: mlabonne
|
130 |
+
model_name: NeuralHermes-2.5-Mistral-7B-laser
|
131 |
model_type: mistral
|
132 |
pipeline_tag: text-generation
|
133 |
inference: false
|
|
|
145 |
quantized_by: Suparious
|
146 |
---
|
147 |
# mlabonne/NeuralHermes-2.5-Mistral-7B-laser AWQ
|
148 |
+
|
149 |
+
- Model creator: [mlabonne](https://huggingface.co/mlabonne)
|
150 |
+
- Original model: [NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)
|
151 |
+
|
152 |
+
<center><img src="https://i.imgur.com/gUlEJuU.jpeg"></center>
|
153 |
+
|
154 |
+
## Model Sumamry
|
155 |
+
|
156 |
+
This is an experimental LASER version of NeuralHermes using [laserRMT](https://github.com/cognitivecomputations/laserRMT), based on [this paper](https://arxiv.org/pdf/2312.13558.pdf).
|
157 |
+
|
158 |
+
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|
159 |
+
|------------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|
160 |
+
|[NeuralHermes-2.5-Mistral-7B-laser](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B-laser)| 43.54| 73.44| 55.26| 42.24| 53.62|
|
161 |
+
|[NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) | 43.67| 73.24| 55.37| 41.76| 53.51|
|
162 |
+
|
163 |
+
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
|
164 |
+
|
165 |
+
NeuralHermes is an [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [mlabonne/chatml_dpo_pairs](https://huggingface.co/datasets/mlabonne/chatml_dpo_pairs) dataset. It surpasses the original model on several benchmarks (see results).
|
166 |
+
|
167 |
+
It is directly inspired by the RLHF process described by [Intel/neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1)'s authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.
|
168 |
+
|
169 |
+
The code to train this model is available on [Google Colab](https://colab.research.google.com/drive/15iFBr1xWgztXvhrj5I9fBv20c7CFOPBE?usp=sharing) and [GitHub](https://github.com/mlabonne/llm-course/tree/main). It required an A100 GPU for about an hour.
|
170 |
+
|
171 |
+
## How to use
|
172 |
+
|
173 |
+
### Install the necessary packages
|
174 |
+
|
175 |
+
```bash
|
176 |
+
pip install --upgrade autoawq autoawq-kernels
|
177 |
+
```
|
178 |
+
|
179 |
+
### Example Python code
|
180 |
+
|
181 |
+
```python
|
182 |
+
from awq import AutoAWQForCausalLM
|
183 |
+
from transformers import AutoTokenizer, TextStreamer
|
184 |
+
|
185 |
+
model_path = "solidrust/NeuralHermes-2.5-Mistral-7B-laser-AWQ"
|
186 |
+
system_message = "You are Hermes, incarnated as a powerful AI."
|
187 |
+
|
188 |
+
# Load model
|
189 |
+
model = AutoAWQForCausalLM.from_quantized(model_path,
|
190 |
+
fuse_layers=True)
|
191 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path,
|
192 |
+
trust_remote_code=True)
|
193 |
+
streamer = TextStreamer(tokenizer,
|
194 |
+
skip_prompt=True,
|
195 |
+
skip_special_tokens=True)
|
196 |
+
|
197 |
+
# Convert prompt to tokens
|
198 |
+
prompt_template = """\
|
199 |
+
<|im_start|>system
|
200 |
+
{system_message}<|im_end|>
|
201 |
+
<|im_start|>user
|
202 |
+
{prompt}<|im_end|>
|
203 |
+
<|im_start|>assistant"""
|
204 |
+
|
205 |
+
prompt = "You're standing on the surface of the Earth. "\
|
206 |
+
"You walk one mile south, one mile west and one mile north. "\
|
207 |
+
"You end up exactly where you started. Where are you?"
|
208 |
+
|
209 |
+
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
|
210 |
+
return_tensors='pt').input_ids.cuda()
|
211 |
+
|
212 |
+
# Generate output
|
213 |
+
generation_output = model.generate(tokens,
|
214 |
+
streamer=streamer,
|
215 |
+
max_new_tokens=512)
|
216 |
+
|
217 |
+
```
|
218 |
+
|
219 |
+
### About AWQ
|
220 |
+
|
221 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
222 |
+
|
223 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
224 |
+
|
225 |
+
It is supported by:
|
226 |
+
|
227 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
228 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
229 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
230 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
231 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
232 |
+
|
233 |
+
## Prompt template: ChatML
|
234 |
+
|
235 |
+
```plaintext
|
236 |
+
<|im_start|>system
|
237 |
+
{system_message}<|im_end|>
|
238 |
+
<|im_start|>user
|
239 |
+
{prompt}<|im_end|>
|
240 |
+
<|im_start|>assistant
|
241 |
+
```
|