File size: 2,829 Bytes
4500ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2595
- Validation Loss: 0.6704
- Train Overall Precision: 0.7379
- Train Overall Recall: 0.8038
- Train Overall F1: 0.7695
- Train Overall Accuracy: 0.8080
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7036     | 1.4227          | 0.2407                  | 0.3337               | 0.2796           | 0.5026                 | 0     |
| 1.1552     | 0.8765          | 0.5724                  | 0.6944               | 0.6275           | 0.7181                 | 1     |
| 0.7585     | 0.7119          | 0.6652                  | 0.7406               | 0.7009           | 0.7820                 | 2     |
| 0.5699     | 0.6705          | 0.6880                  | 0.7592               | 0.7219           | 0.7822                 | 3     |
| 0.4487     | 0.6814          | 0.7087                  | 0.7556               | 0.7314           | 0.7798                 | 4     |
| 0.3664     | 0.6761          | 0.7033                  | 0.7958               | 0.7467           | 0.8027                 | 5     |
| 0.3170     | 0.6953          | 0.7162                  | 0.7903               | 0.7514           | 0.7984                 | 6     |
| 0.2595     | 0.6704          | 0.7379                  | 0.8038               | 0.7695           | 0.8080                 | 7     |


### Framework versions

- Transformers 4.32.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3