something-else
commited on
Commit
•
f85ad14
1
Parent(s):
f5fd061
Upload folder using huggingface_hub
Browse files- configuration_rwkv5.py +120 -0
configuration_rwkv5.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" RWKV configuration"""
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
RWKV5_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
25 |
+
|
26 |
+
|
27 |
+
class Rwkv5Config(PretrainedConfig):
|
28 |
+
"""
|
29 |
+
This is the configuration class to store the configuration of a [`Rwkv5Model`]. It is used to instantiate a RWKV5
|
30 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
31 |
+
defaults will yield a similar configuration to that of the RWVK-4
|
32 |
+
[RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 65536):
|
40 |
+
Vocabulary size of the RWKV5 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`Rwkv5Model`].
|
42 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
43 |
+
Dimensionality of the embeddings and hidden states.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
45 |
+
Number of hidden layers in the model.
|
46 |
+
attention_hidden_size (`int`, *optional*):
|
47 |
+
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
49 |
+
The attention heads to use in rwkv5 self_attention module.
|
50 |
+
head_size (`int`, *optional*, defaults to 64): head_size of rwkv5 self_attention module.
|
51 |
+
intermediate_size (`int`, *optional*):
|
52 |
+
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset.
|
53 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
54 |
+
The epsilon to use in the layer normalization layers.
|
55 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
56 |
+
The id of the beginning of sentence token in the vocabulary. Defaults to 0 as RWKV5 uses the same tokenizer
|
57 |
+
as GPTNeoX.
|
58 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
59 |
+
The id of the end of sentence token in the vocabulary. Defaults to 0 as RWKV5 uses the same tokenizer as
|
60 |
+
GPTNeoX.
|
61 |
+
rescale_every (`int`, *optional*, defaults to 6):
|
62 |
+
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
63 |
+
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
64 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether or not to tie the word embeddings with the input token embeddings.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last state.
|
68 |
+
|
69 |
+
|
70 |
+
Example:
|
71 |
+
|
72 |
+
```python
|
73 |
+
>>> from transformers import Rwkv5Config, Rwkv5Model
|
74 |
+
|
75 |
+
>>> # Initializing a Rwkv5 configuration
|
76 |
+
>>> configuration = Rwkv5Config()
|
77 |
+
|
78 |
+
>>> # Initializing a model (with random weights) from the configuration
|
79 |
+
>>> model = Rwkv5Model(configuration)
|
80 |
+
|
81 |
+
>>> # Accessing the model configuration
|
82 |
+
>>> configuration = model.config
|
83 |
+
```"""
|
84 |
+
|
85 |
+
model_type = "rwkv5"
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
vocab_size=65536,
|
90 |
+
hidden_size=768,
|
91 |
+
num_hidden_layers=24,
|
92 |
+
attention_hidden_size=None,
|
93 |
+
num_attention_heads=64,
|
94 |
+
head_size=64,
|
95 |
+
intermediate_size=None,
|
96 |
+
layer_norm_epsilon=1e-5,
|
97 |
+
bos_token_id=0,
|
98 |
+
eos_token_id=0,
|
99 |
+
rescale_every=6,
|
100 |
+
tie_word_embeddings=False,
|
101 |
+
use_cache=True,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
self.vocab_size = vocab_size
|
105 |
+
self.hidden_size = hidden_size
|
106 |
+
self.num_hidden_layers = num_hidden_layers
|
107 |
+
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
108 |
+
self.num_attention_heads = num_attention_heads
|
109 |
+
self.head_size = head_size
|
110 |
+
self.intermediate_size = None
|
111 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
112 |
+
self.rescale_every = rescale_every
|
113 |
+
self.use_cache = use_cache
|
114 |
+
|
115 |
+
self.bos_token_id = bos_token_id
|
116 |
+
self.eos_token_id = eos_token_id
|
117 |
+
|
118 |
+
super().__init__(
|
119 |
+
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs
|
120 |
+
)
|