File size: 4,002 Bytes
2ea6ac7
4dcd23f
 
 
2ea6ac7
 
 
 
4dcd23f
 
1bf915a
add9a15
e31ea1c
 
4dcd23f
2ea6ac7
b09d893
e31ea1c
2ea6ac7
8a418e7
2ea6ac7
 
 
37ab457
e31ea1c
2ea6ac7
 
5e09163
e31ea1c
 
 
 
 
 
 
ad7b4fd
2ea6ac7
ad7b4fd
 
 
f7450af
2ea6ac7
 
1899f2d
2ea6ac7
 
9f825cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144d3fb
2ea6ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf915a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- arcee-ai/Virtuoso-Small
- Qwen2.5-14B-Qwenvergence-model_stock
- sometimesanotion/Qwen2.5-14B-Qwenvergence-model_stock
metrics:
- accuracy
pipeline_tag: text-generation
---
![Lamarck.webp](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.4-Qwenvergence/resolve/main/Lamarck.webp)
---

Lamarck 14B v0.4 Qwenvergence:  it's a big step up for Lamarck in terms of quality.  All the same ingredients are involved as in previous releases of Lamarck; they are more effectively combined.  This model features slightly improved reasoning from 0.3, but the multi-language and prose are greatly improved.

## Merge Details

This model was initialized from model_stock, and refined from there.  No fine-tuning, or use of models apart from those listed as the contents of Qwen2.5-14B-Qwenvergence-model_stock except for a very mild application of [huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2).

### Models Merged

**Top influences:** These ancestors are in the Qwenvergence model_stock, reinforced in later steps:

- **[arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small)** - A brand new model from Arcee, refined from the notable cross-architecture Llama-to-Qwen distillation [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius).  The first two layers are nearly exclusively from Virtuoso.  It has proven to be a well-rounded performer, and contributes a noticeable boost to the model's prose quality.

- **[CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge)** - A top contender on reasoning benchmarks.  

- **[VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)** - This model's influence is understated, but aids BBH and coding capability.

- **[v000000/Qwen2.5-Lumen-14B](https://huggingface.co/v000000/Qwen2.5-Lumen-14B)** - A leading influence for prose quality.

**Prose added:**

The prose quality has taken a leap, no doubt also to the way [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2), [sthenno-com/miscii-14b-1028](https://huggingface.co/sthenno-com/miscii-14b-1028), [oxyapi/oxy-1-small](https://huggingface.co/oxyapi/oxy-1-small), and [underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b) were applied.

### Configuration

The following YAML configurations were used to initialize and finalize this model:

```yaml
name:                Qwenvergence-model_stock
merge_method:        model_stock
base_model:          Qwen/Qwen2.5-14B
tokenizer_source:    base
parameters:
  int8_mask:         true
  normalize:         true
  rescale:           false
models:
  - model:           allura-org/TQ2.5-14B-Sugarquill-v1
  - model:           oxyapi/oxy-1-small
  - model:           sthenno-com/miscii-14b-1028
  - model:           underwoods/medius-erebus-magnum-14b
  - model:           EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
  - model:           CultriX/SeQwence-14B-EvolMerge
  - model:           arcee-ai/Virtuoso-Small
  - model:           VAGOsolutions/SauerkrautLM-v2-14b-DPO
  - model:           v000000/Qwen2.5-Lumen-14B
dtype:               bfloat16
out_dtype:           bfloat16
---
# Experimental merge methods involving above models
---
name:                Lamarck-14B-v0.4-Qwenvergence
merge_method:        ties
base_model:          sometimesanotion/lamarck-14b-base
tokenizer_source:    base
parameters:         
  density:           1.00
  weight:            1.00
  int8_mask:         true
  normalize:         true
  rescale:           false
models:
  - model:           merges/Qwen2.5-14B-Qwenvergence-slerp
    parameters:
      weight:        1.00
      density:       1.00
  - model:           arcee-ai/Virtuoso-Small
    parameters:
      weight:        1.00
      density:       1.00

```