File size: 3,909 Bytes
0018ee1 e56ff2d 0018ee1 3f5b139 fc91c97 e56ff2d b8840b1 e56ff2d 0018ee1 e56ff2d fc91c97 e56ff2d 0018ee1 e56ff2d 0018ee1 7ef2e7d e56ff2d 0018ee1 8a978fa 0018ee1 543888f 9a42a20 8a978fa 3f5b139 8a978fa 0018ee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
license: mit
language: es
tags:
- generated_from_trainer
model-index:
- name: poem-gen-spanish-t5-small
results: []
---
# poem-gen-spanish-t5-small
This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the [Spanish Poetry Dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) dataset.
The model was created during the [First Spanish Hackathon](https://somosnlp.org/hackathon) organized by [Somos NLP](https://somosnlp.org/).
The team who participated was composed by:
- 🇨🇺 [Alberto Carmona Barthelemy](https://huggingface.co/milyiyo)
- 🇨🇴 [Jorge Henao](https://huggingface.co/jorge-henao)
- 🇪🇸 [Andrea Morales Garzón](https://huggingface.co/andreamorgar)
- 🇮🇳 [Drishti Sharma](https://huggingface.co/DrishtiSharma)
It achieves the following results on the evaluation set:
- Loss: 2.8707
- Perplexity: 17.65
## Model description
The model was trained to generate spanish poems attending to some parameters like style, sentiment, words to include and starting phrase.
Example:
```
poema:
estilo: Pablo Neruda &&
sentimiento: positivo &&
palabras: cielo, luna, mar &&
texto: Todos fueron a verle pasar
```
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model_name = 'hackathon-pln-es/poem-gen-spanish-t5-small'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
author, sentiment, word, start_text = 'Pablo Neruda', 'positivo', 'cielo', 'Todos fueron a la plaza'
input_text = f"""poema: estilo: {author} && sentimiento: {sentiment} && palabras: {word} && texto: {start_text} """
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(inputs["input_ids"],
do_sample = True,
max_length = 30,
repetition_penalty = 20.0,
top_k = 50,
top_p = 0.92)
detok_outputs = [tokenizer.decode(x, skip_special_tokens=True) for x in outputs]
res = detok_outputs[0]
```
## Training and evaluation data
The original [dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) has the columns `author`, `content` and `title`.
For each poem we generate new examples:
- content: *line_i* , generated: *line_i+1*
- content: *concatenate(line_i, line_i+1)* , generated: *line_i+2*
- content: *concatenate(line_i, line_i+1, line_i+2)* , generated: *line_i+3*
The resulting dataset has the columns `author`, `content`, `title` and `generated`.
For each example we compute the sentiment of the generated column and the nouns. In the case of sentiment, we used the model `mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis` and for nouns extraction we used spaCy.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.7082 | 0.73 | 30000 | 2.8878 |
| 2.6251 | 1.46 | 60000 | 2.8940 |
| 2.5796 | 2.19 | 90000 | 2.8853 |
| 2.5556 | 2.93 | 120000 | 2.8749 |
| 2.527 | 3.66 | 150000 | 2.8850 |
| 2.5024 | 4.39 | 180000 | 2.8760 |
| 2.4887 | 5.12 | 210000 | 2.8749 |
| 2.4808 | 5.85 | 240000 | 2.8707 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|