File size: 2,746 Bytes
49910c1 cff8dd4 49910c1 f4ea2c4 49910c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: apache-2.0
tags:
-
datasets:
- EXIST Dataset
metrics:
- accuracy
model-index:
- name: twitter_sexismo-finetuned-exist2021
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: EXIST Dataset
type: EXIST Dataset
args: es
metrics:
- name: Accuracy
type: accuracy
value: 0.79
---
# twitter_sexismo-finetuned-exist2021
This model is a fine-tuned version of [pysentimiento/robertuito-hate-speech](https://huggingface.co/pysentimiento/robertuito-hate-speech) on the EXIST dataset.
It achieves the following results on the evaluation set:
- Loss: 0.40
- Accuracy: 0.79
## Model description
Modelo para el Hackaton de Somos NLP para detección de sexismo en twitts en español
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- my_learning_rate = 2E-6
- my_adam_epsilon = 1E-8
- my_number_of_epochs = 15
- my_warmup = 3
- my_mini_batch_size = 32
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
======== Epoch 9 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:37.
Average training loss: 0.43
Training epoch took: 0:02:18
======== Epoch 10 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:37.
Average training loss: 0.42
Training epoch took: 0:02:18
======== Epoch 11 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:37.
Average training loss: 0.42
Training epoch took: 0:02:18
======== Epoch 12 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:37.
Average training loss: 0.41
Training epoch took: 0:02:18
======== Epoch 13 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:36.
Average training loss: 0.40
Training epoch took: 0:02:18
======== Epoch 14 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:37.
Average training loss: 0.40
Training epoch took: 0:02:18
======== Epoch 15 / 15 ========
Training...
Batch 50 of 143. Elapsed: 0:00:48.
Batch 100 of 143. Elapsed: 0:01:36.
Average training loss: 0.40
Training epoch took: 0:02:18
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Tokenizers 0.11.6
|