File size: 2,746 Bytes
49910c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff8dd4
49910c1
 
 
 
 
 
 
 
f4ea2c4
49910c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: apache-2.0
tags:
- 
datasets:
- EXIST Dataset
metrics:
- accuracy
model-index:
- name: twitter_sexismo-finetuned-exist2021
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: EXIST Dataset
      type: EXIST Dataset
      args: es
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.79
---

# twitter_sexismo-finetuned-exist2021

This model is a fine-tuned version of [pysentimiento/robertuito-hate-speech](https://huggingface.co/pysentimiento/robertuito-hate-speech) on the EXIST dataset.
It achieves the following results on the evaluation set:
- Loss: 0.40
- Accuracy: 0.79

## Model description

Modelo para el Hackaton de Somos NLP para detección de sexismo en twitts en español

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- my_learning_rate = 2E-6 
- my_adam_epsilon = 1E-8 
- my_number_of_epochs = 15
- my_warmup = 3
- my_mini_batch_size = 32
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

======== Epoch 9 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:37.

  Average training loss: 0.43
  Training epoch took: 0:02:18

======== Epoch 10 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:37.

  Average training loss: 0.42
  Training epoch took: 0:02:18

======== Epoch 11 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:37.

  Average training loss: 0.42
  Training epoch took: 0:02:18

======== Epoch 12 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:37.

  Average training loss: 0.41
  Training epoch took: 0:02:18

======== Epoch 13 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:36.

  Average training loss: 0.40
  Training epoch took: 0:02:18

======== Epoch 14 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:37.

  Average training loss: 0.40
  Training epoch took: 0:02:18

======== Epoch 15 / 15 ========
Training...
  Batch    50  of    143.    Elapsed: 0:00:48.
  Batch   100  of    143.    Elapsed: 0:01:36.

  Average training loss: 0.40
  Training epoch took: 0:02:18


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Tokenizers 0.11.6