Update README.md
Browse files
README.md
CHANGED
@@ -19,15 +19,15 @@ model-index:
|
|
19 |
metrics:
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
-
value: 0.
|
23 |
---
|
24 |
|
25 |
# twitter_sexismo-finetuned-exist2021
|
26 |
|
27 |
This model is a fine-tuned version of [pysentimiento/robertuito-hate-speech](https://huggingface.co/pysentimiento/robertuito-hate-speech) on the EXIST dataset.
|
28 |
It achieves the following results on the evaluation set:
|
29 |
-
- Loss: 0.
|
30 |
-
- Accuracy: 0.
|
31 |
|
32 |
## Model description
|
33 |
|
@@ -46,265 +46,25 @@ More information needed
|
|
46 |
### Training hyperparameters
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
-
- my_learning_rate =
|
50 |
- my_adam_epsilon = 1E-8
|
51 |
-
- my_number_of_epochs =
|
52 |
- my_warmup = 3
|
53 |
- my_mini_batch_size = 32
|
54 |
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
-
- num_epochs:
|
57 |
|
58 |
### Training results
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
======== Epoch 2 / 30 ========
|
69 |
-
Training...
|
70 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
71 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
72 |
-
|
73 |
-
Average training loss: 0.36
|
74 |
-
Training epoch took: 0:02:29
|
75 |
-
|
76 |
-
======== Epoch 3 / 30 ========
|
77 |
-
Training...
|
78 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
79 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
80 |
-
|
81 |
-
Average training loss: 0.34
|
82 |
-
Training epoch took: 0:02:29
|
83 |
-
|
84 |
-
======== Epoch 4 / 30 ========
|
85 |
-
Training...
|
86 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
87 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
88 |
-
|
89 |
-
Average training loss: 0.33
|
90 |
-
Training epoch took: 0:02:29
|
91 |
-
|
92 |
-
======== Epoch 5 / 30 ========
|
93 |
-
Training...
|
94 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
95 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
96 |
-
|
97 |
-
Average training loss: 0.31
|
98 |
-
Training epoch took: 0:02:29
|
99 |
-
|
100 |
-
======== Epoch 6 / 30 ========
|
101 |
-
Training...
|
102 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
103 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
104 |
-
|
105 |
-
Average training loss: 0.29
|
106 |
-
Training epoch took: 0:02:29
|
107 |
-
|
108 |
-
======== Epoch 7 / 30 ========
|
109 |
-
Training...
|
110 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
111 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
112 |
-
|
113 |
-
Average training loss: 0.28
|
114 |
-
Training epoch took: 0:02:29
|
115 |
-
|
116 |
-
======== Epoch 8 / 30 ========
|
117 |
-
Training...
|
118 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
119 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
120 |
-
|
121 |
-
Average training loss: 0.27
|
122 |
-
Training epoch took: 0:02:29
|
123 |
-
|
124 |
-
======== Epoch 9 / 30 ========
|
125 |
-
Training...
|
126 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
127 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
128 |
-
|
129 |
-
Average training loss: 0.25
|
130 |
-
Training epoch took: 0:02:28
|
131 |
-
|
132 |
-
======== Epoch 10 / 30 ========
|
133 |
-
Training...
|
134 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
135 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
136 |
-
|
137 |
-
Average training loss: 0.24
|
138 |
-
Training epoch took: 0:02:29
|
139 |
-
|
140 |
-
======== Epoch 11 / 30 ========
|
141 |
-
Training...
|
142 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
143 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
144 |
-
|
145 |
-
Average training loss: 0.23
|
146 |
-
Training epoch took: 0:02:28
|
147 |
-
|
148 |
-
======== Epoch 12 / 30 ========
|
149 |
-
Training...
|
150 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
151 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
152 |
-
|
153 |
-
Average training loss: 0.22
|
154 |
-
Training epoch took: 0:02:29
|
155 |
-
|
156 |
-
======== Epoch 13 / 30 ========
|
157 |
-
Training...
|
158 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
159 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
160 |
-
|
161 |
-
Average training loss: 0.21
|
162 |
-
Training epoch took: 0:02:29
|
163 |
-
|
164 |
-
======== Epoch 14 / 30 ========
|
165 |
-
Training...
|
166 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
167 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
168 |
-
|
169 |
-
Average training loss: 0.20
|
170 |
-
Training epoch took: 0:02:29
|
171 |
-
|
172 |
-
======== Epoch 15 / 30 ========
|
173 |
-
Training...
|
174 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
175 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
176 |
-
|
177 |
-
Average training loss: 0.19
|
178 |
-
Training epoch took: 0:02:29
|
179 |
-
|
180 |
-
======== Epoch 16 / 30 ========
|
181 |
-
Training...
|
182 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
183 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
184 |
-
|
185 |
-
Average training loss: 0.18
|
186 |
-
Training epoch took: 0:02:29
|
187 |
-
|
188 |
-
======== Epoch 17 / 30 ========
|
189 |
-
Training...
|
190 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
191 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
192 |
-
|
193 |
-
Average training loss: 0.17
|
194 |
-
Training epoch took: 0:02:29
|
195 |
-
|
196 |
-
======== Epoch 18 / 30 ========
|
197 |
-
Training...
|
198 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
199 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
200 |
-
|
201 |
-
Average training loss: 0.17
|
202 |
-
Training epoch took: 0:02:29
|
203 |
-
|
204 |
-
======== Epoch 19 / 30 ========
|
205 |
-
Training...
|
206 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
207 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
208 |
-
|
209 |
-
Average training loss: 0.16
|
210 |
-
Training epoch took: 0:02:29
|
211 |
-
|
212 |
-
======== Epoch 20 / 30 ========
|
213 |
-
Training...
|
214 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
215 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
216 |
-
|
217 |
-
Average training loss: 0.15
|
218 |
-
Training epoch took: 0:02:29
|
219 |
-
|
220 |
-
======== Epoch 21 / 30 ========
|
221 |
-
Training...
|
222 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
223 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
224 |
-
|
225 |
-
Average training loss: 0.15
|
226 |
-
Training epoch took: 0:02:29
|
227 |
-
|
228 |
-
======== Epoch 22 / 30 ========
|
229 |
-
Training...
|
230 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
231 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
232 |
-
|
233 |
-
Average training loss: 0.15
|
234 |
-
Training epoch took: 0:02:29
|
235 |
-
|
236 |
-
======== Epoch 23 / 30 ========
|
237 |
-
Training...
|
238 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
239 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
240 |
-
|
241 |
-
Average training loss: 0.14
|
242 |
-
Training epoch took: 0:02:29
|
243 |
-
|
244 |
-
======== Epoch 24 / 30 ========
|
245 |
-
Training...
|
246 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
247 |
-
Batch 100 of 143. Elapsed: 0:01:45.
|
248 |
-
|
249 |
-
Average training loss: 0.14
|
250 |
-
Training epoch took: 0:02:29
|
251 |
-
|
252 |
-
======== Epoch 25 / 30 ========
|
253 |
-
Training...
|
254 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
255 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
256 |
-
|
257 |
-
Average training loss: 0.14
|
258 |
-
Training epoch took: 0:02:29
|
259 |
-
|
260 |
-
======== Epoch 26 / 30 ========
|
261 |
-
Training...
|
262 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
263 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
264 |
-
|
265 |
-
Average training loss: 0.13
|
266 |
-
Training epoch took: 0:02:29
|
267 |
-
|
268 |
-
======== Epoch 27 / 30 ========
|
269 |
-
Training...
|
270 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
271 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
272 |
-
|
273 |
-
Average training loss: 0.13
|
274 |
-
Training epoch took: 0:02:29
|
275 |
-
|
276 |
-
======== Epoch 28 / 30 ========
|
277 |
-
Training...
|
278 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
279 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
280 |
-
|
281 |
-
Average training loss: 0.13
|
282 |
-
Training epoch took: 0:02:29
|
283 |
-
|
284 |
-
======== Epoch 29 / 30 ========
|
285 |
-
Training...
|
286 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
287 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
288 |
-
|
289 |
-
Average training loss: 0.12
|
290 |
-
Training epoch took: 0:02:29
|
291 |
-
|
292 |
-
======== Epoch 30 / 30 ========
|
293 |
-
Training...
|
294 |
-
Batch 50 of 143. Elapsed: 0:00:52.
|
295 |
-
Batch 100 of 143. Elapsed: 0:01:44.
|
296 |
-
|
297 |
-
Average training loss: 0.13
|
298 |
-
Training epoch took: 0:02:29
|
299 |
-
|
300 |
-
precision recall f1-score support
|
301 |
-
|
302 |
-
0 0.78 0.82 0.80 551
|
303 |
-
1 0.82 0.79 0.81 590
|
304 |
-
|
305 |
-
accuracy 0.80 1141
|
306 |
-
macro avg 0.80 0.80 0.80 1141
|
307 |
-
weighted avg 0.80 0.80 0.80 1141
|
308 |
|
309 |
### Framework versions
|
310 |
|
|
|
19 |
metrics:
|
20 |
- name: Accuracy
|
21 |
type: accuracy
|
22 |
+
value: 0.86
|
23 |
---
|
24 |
|
25 |
# twitter_sexismo-finetuned-exist2021
|
26 |
|
27 |
This model is a fine-tuned version of [pysentimiento/robertuito-hate-speech](https://huggingface.co/pysentimiento/robertuito-hate-speech) on the EXIST dataset.
|
28 |
It achieves the following results on the evaluation set:
|
29 |
+
- Loss: 0.4
|
30 |
+
- Accuracy: 0.86
|
31 |
|
32 |
## Model description
|
33 |
|
|
|
46 |
### Training hyperparameters
|
47 |
|
48 |
The following hyperparameters were used during training:
|
49 |
+
- my_learning_rate = 5E-5
|
50 |
- my_adam_epsilon = 1E-8
|
51 |
+
- my_number_of_epochs = 8
|
52 |
- my_warmup = 3
|
53 |
- my_mini_batch_size = 32
|
54 |
- optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
- lr_scheduler_type: linear
|
56 |
+
- num_epochs: 8
|
57 |
|
58 |
### Training results
|
59 |
+
Epoch Training Loss Validation Loss Accuracy F1 Precision Recall
|
60 |
+
1 0.398400 0.336709 0.861404 0.855311 0.872897 0.838420
|
61 |
+
2 0.136100 0.575872 0.846491 0.854772 0.794753 0.924596
|
62 |
+
3 0.105600 0.800685 0.848246 0.837863 0.876471 0.802513
|
63 |
+
4 0.066500 0.928388 0.849123 0.856187 0.801252 0.919210
|
64 |
+
5 0.004500 0.990655 0.851754 0.853680 0.824415 0.885099
|
65 |
+
6 0.005500 1.035315 0.852632 0.856164 0.818331 0.897666
|
66 |
+
7 0.000200 1.052970 0.857895 0.859375 0.831933 0.888689
|
67 |
+
8 0.001700 1.048338 0.856140 0.857143 0.832487 0.883303
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
### Framework versions
|
70 |
|